Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (9): 1857-1865    DOI: 10.3785/j.issn.1008-973X.2024.09.010
    
Effects of erosion method and environment on mechanical properties of solidified soft soil
Jun HE1,2(),Sihao LONG1,Yuanjun ZHU1,Shiru LUO1
1. School of Civil Engineering, Architectural and Environment, Hubei University of Technology, Wuhan 430068, China
2. Key Laboratory of Health Intelligent Perception and Ecological Restoration of River and Lake, Ministry of Education, Hubei University of Technology, Wuhan 430068, China
Download: HTML     PDF(2495KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Soda residue (SR)-ground granulated blast furnace slag (GGBS)-carbide slag (CS) and cement were used as solidifiers of soft soil. Different erosion environments (Na2SO4, MgSO4 and seawater) and erosion modes (full immersion, semi-immersion and soil erosion) were set up. Unconfined compressive strength, X-ray diffraction and scanning electron microscope tests were carried out to study the effects of solidifier, erosion mode and environment on the erosion resistance of the solidified soft soil. Results showed that, under the same erosion mode and environment, the integrity and the strength of SR-GGBS-CS solidified soft soil were greater than those of cement-solidified soft soil. The samples in MgSO4 environment were seriously damaged and the strength values were the lowest. The integrity and the strength of cement-solidified soft soil in the semi-immersion mode were better than those in the full-immersion mode. Although the appearance of SR-GGBS-CS solidified soft soil was relatively complete in the semi-immersion mode, the strength in the semi-immersion mode was lower than that in the full-immersion mode. The strength of solidified soft soil was high in soil erosion mode. A large amount of thaumasite was generated in the soaking area of cement-solidified soft soil, contributing to its lowest strength in the full-immersion mode. As for SR-GGBS-CS solidified soft soil, more thaumasite generation and salt crystallization in the non-immersed zone resulted in the lowest strength in the semi-immersion mode. The semi-immersion became the most dangerous erosion mode for SR-GGBS-CS solidified soft soil.



Key wordssolidified soft soil      erosion mode      erosion environment      erosion resistance      solid waste     
Received: 15 July 2023      Published: 30 August 2024
CLC:  TU 411  
Fund:  国家自然科学基金资助项目(41772332).
Cite this article:

Jun HE,Sihao LONG,Yuanjun ZHU,Shiru LUO. Effects of erosion method and environment on mechanical properties of solidified soft soil. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1857-1865.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.09.010     OR     https://www.zjujournals.com/eng/Y2024/V58/I9/1857


侵蚀方式和环境对固化软土力学性质的影响

以碱渣(SR)-矿渣(GGBS)-电石渣(CS) 和水泥为海相软土固化剂,设置Na2SO4、MgSO4和海水3种侵蚀溶液环境,溶液全浸泡、溶液半浸泡和土中侵蚀3种侵蚀方式. 开展固化软土无侧限抗压强度试验、X射线衍射及扫描电镜测试,研究固化剂种类、侵蚀方式和环境对固化软土抗侵蚀性能的影响. 研究表明:当侵蚀方式和环境相同时,碱渣-矿渣-电石渣固化软土完整程度和强度大于水泥固化软土的. MgSO4溶液环境下固化软土破损严重,强度最低. 当侵蚀环境相同时,水泥固化软土完整程度和强度均为半浸泡下的优于全浸泡下的;碱渣-矿渣-电石渣固化软土在半浸泡时外观较完整,但强度却低于全浸泡方式下的. 在土中侵蚀时固化软土强度较高. 水泥固化软土在浸泡区会生成大量碳硫硅钙石,故其在全浸泡时强度最低;碱渣-矿渣-电石渣固化软土在未浸泡区会有较多碳硫硅钙石和盐结晶,造成其半浸泡后强度最低,半浸泡成为其最危险的侵蚀方式.


关键词: 固化软土,  侵蚀方式,  侵蚀环境,  抗侵蚀耐久性,  固体废弃物 
参数数值参数数值
w0/%36.4wL/%30.8
ρd/(g?cm?3)1.32wP/%19.2
e1.093IL1.48
Gs2.72IP11.6
Tab.1 Basic physical indexes of soft soil
Fig.1 Schematic diagram of erosion test
侵蚀方式试样S20G10试样C10试样C15
Na2SO4溶液MgSO4溶液海水Na2SO4溶液MgSO4溶液海水Na2SO4溶液MgSO4溶液
全浸泡
半浸泡
Tab.2 Appearance of samples after 28 days erosion under different erosion methods and environments
Fig.2 Effect of erosion mode and solution on mass of solidified soft soil
Fig.3 Stress-strain curve for sample S20G10 under different erosion methods and environments
Fig.4 Stress-strain curve for sample C10 under different erosion methods and environments
Fig.5 Unconfined compression strength of solidified soft soil under different erosion methods and environments
侵蚀方式和环境试样外观破损程度质量变化率强度
侵蚀溶液一定S20G10半浸泡<全浸泡半浸泡<全浸泡半浸泡<全浸泡
C10半浸泡<全浸泡半浸泡<全浸泡全浸泡<半浸泡
侵蚀方式一定S20G10Na2SO4≈海水<MgSO4Na2SO4<海水<MgSO4MgSO4<海水<Na2SO4
C10海水<Na2SO4< MgSO4MgSO4≈海水<Na2SO4MgSO4<Na2SO4<海水
Tab.3 Comparison of integrity, mass change rate and strength of samples
Fig.6 Unconfined compression strength of samples with three solidifier mass fractions
Fig.7 XRD patterns of samples under different erosion methods and environments
Fig.8 SEM photos of S20G10 sample in soaking zone of MgSO4 solution
[1]   YANG J J, YAN N, LIU Q, et al Laboratory test on long-term deterioration of cement soil in seawater environment[J]. Journal of Tianjin University, 2016, 22: 132- 138
[2]   闫楠, 杨俊杰 海水浸泡下水泥土强度衰减室内试验研究[J]. 中南大学学报: 自然科学版, 2017, 48 (1): 191- 202
YAN Nan, YANG Junjie Laboratory experimental study on strength attenuation of cement soil under seawater immersion[J]. Journal of Central South University: Natural Science Edition, 2017, 48 (1): 191- 202
[3]   闫楠, 杨俊杰, 刘强, 等 海水环境下水泥土强度衰减过程室内试验研究[J]. 土木工程学报, 2017, 50 (11): 115- 124
YAN Nan, YANG Junjie, LIU Qiang, et al Indoor experimental study on strength attenuation process of cement soil in seawater[J]. China Civil Engineering Journal, 2017, 50 (11): 115- 124
[4]   白晓红, 赵永强, 韩鹏举, 等 污染环境对水泥土力学特性影响的试验研究[J]. 岩土工程学报, 2007, (8): 1260- 1263
BAI Xiaohong, ZHAO Yongqiang, HAN Pengju, et al Experimental study on the influence of polluted environment on the mechanical properties of cement soil[J]. Chinese Journal of Geotechnical Engineering, 2007, (8): 1260- 1263
doi: 10.3321/j.issn:1000-4548.2007.08.024
[5]   韩鹏举, 白晓红, 赵永强, 等 Mg2+和SO42-相互影响对水泥土强度影响的试验研究[J]. 岩土工程学报, 2009, 31 (1): 72- 76
HAN Pengju, BAI Xiaohong, ZHAO Yongqiang, et al Experimental study on the influence of interaction between Mg2 + and SO42− on the strength of cement soil[J]. Chinese Journal of Geotechnical Engineering, 2009, 31 (1): 72- 76
doi: 10.3321/j.issn:1000-4548.2009.01.012
[6]   刘泉声, 柳志平, 程勇, 等 水泥土在侵蚀环境中的试验研究和等效分析[J]. 岩土力学, 2013, 34 (7): 1854- 1860
LIU Quansheng, LIU Zhiping, CHENG Yong, et al Experimental study and equivalent analysis of cemented soil in erosion environment[J]. Rock and Soil Mechanics, 2013, 34 (7): 1854- 1860
[7]   PHAM V N, TUMER B, HUANG J, et al Long-term strength of soil-cement columns in coastal areas[J]. Soils and Foundations, 2017, 57: 645- 654
doi: 10.1016/j.sandf.2017.04.005
[8]   HE J, LI Z X, WANG X Q, et al Durability of soft soil treated with soda residue and ground granulated blast furnace slag in a soaking environment[J]. Journal of Materials in Civil Engineering, 2020, 32 (3): 06019018
doi: 10.1061/(ASCE)MT.1943-5533.0003033
[9]   中华人民共和国交通运输部. 公路工程水泥及水泥混凝土试验规程: JTG 3420—2020 [S]. 北京: 人民交通出版社, 2020.
[10]   杨俊杰, 董猛荣, 孙涛, 等 现场条件下水泥土劣化试验及劣化深度预测[J]. 中国水利水电科学研究院学报, 2017, 15 (4): 297- 302
YANG Junjie, DONG Mengrong, SUN Tao, et al Cement soil degradation test and degradation depth prediction under field conditions[J]. Journal of China Institute of Water Resources and Hydropower Research, 2017, 15 (4): 297- 302
[11]   闫楠, 杨俊杰, 刘强, 等 原土环境下水泥土强度衰减过程室内试验研究[J]. 中国海洋大学学报: 自然科学版, 2019, 49 (8): 85- 92
YAN Nan, YANG Junjie, LIU Qiang, et al Laboratory experimental study on strength attenuation process of cement soil in original soil environment[J]. Journal of Ocean University of China: Natural Science Edition, 2019, 49 (8): 85- 92
[12]   董猛荣, 杨俊杰, 王曼, 等 海相软土场地水泥土劣化机理室内试验研究[J]. 中国海洋大学学报: 自然科学版, 2020, 50 (1): 93- 103
DONG Mengrong, YANG Junjie, WANG Man, et al Laboratory test study on deterioration mechanism of cement soil in marine soft soil site[J]. Journal of Ocean University of China: Natural Science Edition, 2020, 50 (1): 93- 103
[13]   IZUO H, NAKARAI K, KULIK D A Twenty-two-year investigation of strength development and surface deterioration of cement-treated clay in an in-situ field test[J]. Cement and Concrete Composites, 2022, 134: 104783
doi: 10.1016/j.cemconcomp.2022.104783
[14]   LUO Z, ZHANG B, ZOU J, et al Sulfate erosion resistance of slag-fly ash based geopolymer stabilized soft soil under semi-immersion condition[J]. Case Studies in Construction Materials, 2022, 17: e01506
doi: 10.1016/j.cscm.2022.e01506
[15]   朱健健, 高建明, 陈菲, 等 水泥砂浆半浸泡在NaCl-Na2SO4混合溶液中的侵蚀机理[J]. 东南大学学报: 自然科学版, 2019, 49 (5): 964- 972
ZHU Jianjian, GAO Jianming, CHEN Fei, et al Erosion mechanism of cement mortar semi-immersed in NaCl-Na2SO4 mixed solution[J]. Journal of Southeast University: Natural Science Edition, 2019, 49 (5): 964- 972
[16]   刘赞群, 裴敏, 张丰燕, 等 半浸泡在Na2SO4溶液中水泥净浆不同部位化学侵蚀产物对比[J]. 建筑材料学报, 2020, 23 (3): 485- 492
LIU Zanqun, PEI Min, ZHANG Fengyan, et al Comparison of chemical erosion products in different parts of cement paste semi-immersed in Na2SO4 solution[J]. Journal of Building Materials, 2020, 23 (3): 485- 492
[17]   NAJJAR M F, NEHDI M L, SOLIMAN A M, et al Damage mechanisms of two-stage concrete exposed to chemical and physical sulfate attack[J]. Construction and Building Materials, 2017, 137: 141- 152
doi: 10.1016/j.conbuildmat.2017.01.112
[18]   中华人民共和国建设部. 岩土工程勘察规范(2009年版): GB 50021—2001 [S]. 北京: 中国建筑工业出版社, 2002.
[19]   中华人民共和国建设部. 工业建筑防腐设计规范: GB/T 50046—2018 [S]. 北京: 中国计划出版社, 2019.
[20]   何俊, 栗志翔, 石小康, 等 侵蚀环境中碱渣-矿渣固化淤泥的力学性质[J]. 水文地质工程地质, 2019, 46 (6): 83- 89
HE Jun, LI Zhixiang, SHI Xiaokang, et al Mechanical properties of alkali slag-slag solidified sludge in erosion environment[J]. Hydrogeology and Engineering Geology, 2019, 46 (6): 83- 89
[21]   NEHDI M, HAYEK M Behavior of blended cement mortars exposed to sulfate solutions cycling in relative humidity[J]. Cement and Concrete Research, 2005, 35 (4): 731- 742
doi: 10.1016/j.cemconres.2004.05.032
[22]   马保国, 董荣珍, 高小建, 等 混凝土中Thaumasite硫酸盐侵蚀的形成与特征[J]. 铁道科学与工程学报, 2005, (1): 14- 18
MA Baoguo, DONG Rongzhen, GAO Xiaojian, et al Formation and characteristics of thaumasite sulfate attack in concrete[J]. Journal of Railway Science and Engineering, 2005, (1): 14- 18
doi: 10.3969/j.issn.1672-7029.2005.01.004
[23]   吴萌, 张云升, 刘志勇, 等 水泥基材料碳硫硅钙石型硫酸盐侵蚀的研究进展[J]. 硅酸盐学报, 2022, 50 (8): 2270- 2283
WU Meng, ZHANG Yunsheng, LIU Zhiyong, et al Research progress on thaumasite sulfate attack of cement-based materials[J]. Journal of the Chinese Ceramic Society, 2022, 50 (8): 2270- 2283
[1] Guangyao LI,Sida LIU,He LI,Liangtong ZHAN,Min XIA. Factors affecting gas closure capacity of enhanced gas collection cover and optimized arrangement[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(1): 121-129.
[2] Wei WANG,Shuai-shuai HUANG,Wen-jie YU,Xu-ming CHE,Na LI. Direct shear mechanical behavior of cement stabilized road solid waste modified by fibers and nanomaterials[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1727-1735.
[3] Xiao-qing LIN,Yu-xuan YING,Hong YU,Xiao-dong LI,Jian-hua YAN. Calculation and prediction of flue gas residence time from CFB municipal solid waste incinerator[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1578-1587.
[4] Jia MENG,Jun-chao LI,Yun-min CHEN. Strain-hardening mechanism and applicability in hypergravity simulation of municipal solid waste[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 664-673.
[5] Jun LIU,Quan-gong LI,Yi-han LIAO,Wei-shu WANG. Performance of incinerator-waste heat boiler and NOx emissions in solid waste incineration power plants[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 1014-1021.
[6] XU Hui, MIAO Jian-dong, CHEN Ping, ZHAN Liang-tong, LUO Xiao-yong. Measurements of geotechnical properties of municipal solid waste incineration fly ash stabilized by chemical reagents[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 1-10.
[7] YOU Hai-hui, MA Zeng-yi, TANG Yi-jun, WANG Yue-lan, ZHENG Lin, YU Zhong, JI Cheng-jun. Soft measurement of heating value of burning municipal solid waste for circulating fluidized bed[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1163-1172.
[8] LIU Rui-mei, LIU Yu-kun, WANG Zhi-hua, LIU Ying-zu, HU Li-hua, SHAO Zhe-ru, CEN Ke-fa. CFD simulation and optimization of secondary air distribution for waste combustion in grate furnace[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 500-507.
[9] KE Han, DONG Ding, CHEN Yun-min, GUO Cheng, FENG Shi-jin. Nonlinear elastic model for municipal solid waste considering dilatancy effect[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(11): 2158-2164.
[10] LIU Hai long, ZHOU Jia wei, CHEN Yun min, LI Yu chao, ZHAN Liang tong. Evaluation of municipal solid waste landfill stabilization[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(12): 2336-2342.
[11] ZHANG Zhen-ying, YAN Li-jun. Correlation properties of the deformation and the shear strength of fresh municipal solid waste[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(11): 1962-1967.
[12] KE Han,WANG Wen-fang, WEI Chang-chun, CHEN Yun-min, ZHAN Liang-tong. Experimental study on saturated hydraulic conductivity of MSW under different conditions[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(7): 1164-1170.
[13] LU Sheng-yong, WU Hai-long, CHEN Tong, LI Xiao-dong, YAN Jian-hua. Dioxin mass balance in fluidized bed incinerator co-firing
municipal solid waste and coal
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(12): 2188-2195.
[14] WANG Qin, YAN Jian-hua, PAN Xin-chao, CHI Yong, GAO Fei. Vitrification of MSWI fly ash using direct current double arc plasma[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(1): 141-145.
[15] YAN Mi, LI Xiao-Dong, ZHANG Xiao-Xiang, LIU Ke, YAN Jian-Hua, CEN Ge-Fa. Correlation between PAHs and PCDD/Fs in municipal solid waste incinerators[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(6): 1118-1121.