Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (6): 1174-1184    DOI: 10.3785/j.issn.1008-973X.2024.06.008
    
Meteorological warning for rainfall-induced slope instability risk
Liangxuan YAN1(),Yishun ZHANG2,Quanbing GONG1,Xiepan LIU1,Haomeng ZHU2,Kunlong YIN1,*(),Lixia CHEN3
1. Faculty of Engineering, China University of Geosciences, Wuhan 430074, China
2. Geological Hazard Prevention and Control Institute, Zhejiang Institute of Geosciences, Hangzhou 310000, China
3. Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China
Download: HTML     PDF(5548KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A slope-scale meteorological warning model for rainfall-induced slope instability risk was constructed using benchmark threshold and a threshold adjustment scheme, in order to carry out refined landslide risk management. The benchmark threshold was proposed by the intensity-duration model. Adjusting factors were selected from slope geometry, rock and soil shear strength, hydrogeological conditions and vegetation based on the characteristics of the slope geological environment, and the benchmark slope was determined. The threshold adjustment scheme was obtained from the perspective of rainfall infiltration process, which explored the variation of the slope stability caused by the changes of the geological environment. Taking Pingyang County in Zhejiang Province as the study area, a quantitative formula was defined for calculating the threshold of individual slopes. Thresholds corresponding to different warning levels were formed based on the environment of each slope. The comprehensive early warning effectiveness rate reached 72%, which showed a satisfactory warning effect. An innovative slope-scale risk warning model was proposed. The precise landslide early warning at slope-unit scale was realized, which can provide new ideas and references for refined landslide early warning and risk management on purpose of “each-slope, each-threshold”.



Key wordslandslide risk      meteorological warning      threshold      geological environment      slope scale     
Received: 12 June 2023      Published: 25 May 2024
CLC:  TP 642  
Fund:  平阳县地质灾害风险降雨阈值项目(LXCG2022-070).
Corresponding Authors: Kunlong YIN     E-mail: yanliangxuan@cug.edu.cn;yinkl@cug.edu.cn
Cite this article:

Liangxuan YAN,Yishun ZHANG,Quanbing GONG,Xiepan LIU,Haomeng ZHU,Kunlong YIN,Lixia CHEN. Meteorological warning for rainfall-induced slope instability risk. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1174-1184.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.06.008     OR     https://www.zjujournals.com/eng/Y2024/V58/I6/1174


降雨诱发斜坡失稳风险的气象预警

采用基准阈值和阈值调整方案构建斜坡尺度的降雨诱发斜坡失稳风险的气象预警模型,开展精细化滑坡风险管理. 采用降雨强度-持续时间模型确定基准阈值;分析斜坡地质环境特征,从斜坡几何结构、岩土抗剪强度、水文地质条件、植被等方面选取调整因子,并确定基准斜坡;针对降雨入渗过程分析地质环境变化造成的斜坡稳定性变化,得出阈值调整方案. 以浙江省平阳县为研究区,提出当地阈值计算公式,并根据各斜坡的地质环境形成各自不同等级的预警判据,综合预警有效率达到72%,效果良好. 提出斜坡尺度的风险预警模型,实现了斜坡单元级别的精准预警,能够为“一区一阈值”精细化滑坡气象预警与风险管控提供新思路和参考.


关键词: 滑坡风险,  气象预警,  阈值,  地质环境,  斜坡尺度 
Fig.1 Meteorological warning model for rainfall-induced slope instability based on geological environment
Fig.2 Photo of typical landslide in Pingyang County
Fig.3 Typical typhoon rainfall process
Fig.4 Accumulated rainfall before geological disasters
Fig.5 I-D threshold curve of rainfall-induced landslide in Pingyang County
预警等级RS/mm
I级(红色预警)[270, +∞)
II级(橙色预警)[210, 270)
III级(黄色预警)[150, 210)
IV级(蓝色预警)[85, 150)
Tab.1 Early warning benchmark threshold (24 h) of rainfall-induced landslide in Pingyang County
Fig.6 Benchmark slope model
Fig.7 Hourly rainfall intensity under rainfall scenario
Fig.8 Variation of slope stability coefficient with different slope values
Fig.9 Rainfall threshold adjustment fitting curve of slope
Fig.10 Variation of slope stability coefficient with different cover layer thicknesses
Fig.11 Rainfall threshold adjustment fitting curve of slope cover layer thickness
Fig.12 Variation of slope stability coefficient with different internal friction angles
Fig.13 Rainfall threshold adjustment fitting curve of slope internal friction angle
Fig.14 Fitting curves of Fsi and Fsmin of different cohesion forces
Fig.15 Variation of slope stability coefficient with different permeability coefficients
Fig.16 Initial stability coefficients of slopes under different cover layer thicknesses with or without cutting slope
植被类型植被特征η
杉木树高约30 m,大枝平展,小枝对生或轮生,常成二列
状,叶子披针形或条状披针形,长2~6 cm,宽3~5 mm
0.82
松树轮状分枝,节间长,小枝较细弱平直,
树冠篷松不紧凑,针叶细长成束
0.85
毛竹竿高可达20多米,末级小枝一般有2~4叶,
叶片较小较薄,披针形
0.93
油茶树树高一般约3 m,单叶互生,其叶子呈椭圆形,
且相对比较茂盛
0.57
Tab.2 Common vegetation and its effective rainfall coefficient reference values
地质环境因子调整规则
斜坡坡度α/(o)ΔRα=?0.01748(α?25)×RS
覆盖层厚度d/mΔRd=0.1056(d?3)×RS+7
内摩擦角φ/(o)ΔRφ=0.00667(φ?25)×RS
黏聚力c/kPaΔRc=0.02(c?25)×RS
渗透系数k/(m·s?1)$ \Delta R_k=\left\{\begin{array}{*{20}{l}}-0.2 \times R_{\mathrm{S}}, & k>2 \times 10^{-7}\; \mathrm{m / s} \\0, & k=2 \times 10^{-7} \;\mathrm{m / s}\\0.2 \times R_{\mathrm{S}}, & k<2 \times 10^{-7}\; \mathrm{m / s}\end{array}\right. $
切坡情况$ \Delta R_{\rm {s }}=\left\{\begin{array}{*{20}{l}}0,& \text { 有切坡 } \\0.2 \times R_{\mathrm{S}},& \text { 无切坡 }\end{array}\right. $
不同植被类型有效
降雨系数/η
杉木0.82
松树0.85
毛竹0.93
油茶树0.57
荒地1.00
Tab.3 Adjustment rules of rainfall-induced slope instability early warning threshold factor in Pingyang County
Fig.17 Review of early warning of landslides induced by Super Typhoon Megi
[1]   FROUDE M J, PETLEY D N Global fatal landslide occurrence from 2004 to 2016[J]. Natural Hazards and Earth System Sciences, 2018, 18 (8): 2161- 2181
doi: 10.5194/nhess-18-2161-2018
[2]   戚国庆. 降雨诱发滑坡机理及其评价方法研究: 非饱和土力学理论在降雨诱发型滑坡研究中的应用[D]. 成都: 成都理工大学, 2004.
QI Guoqing. Study on the mechanics of rainfall-induced landslide and its evaluating method: the research of landslide due to rainfall applying theories of unsaturated soils mechanics [D]. Chengdu: Chengdu University of Technology, 2004.
[3]   殷坤龙, 汪洋, 唐仲华 降雨对滑坡的作用机理及动态模拟研究[J]. 地质科技情报, 2002, 21 (1): 75- 78
YIN Kunlong, WANG Yang, TANG Zhonghua Mechanism and dynamic simulation of landslide by precipitation[J]. Geological Science and Technology Information, 2002, 21 (1): 75- 78
[4]   LEPORE C, ARNONE E, NOTO L V, et al Physically based modeling of rainfall-triggered landslides: a case study in the Luquillo forest, Puerto Rico[J]. Hydrology and Earth System Sciences, 2013, 17 (9): 3371- 3387
doi: 10.5194/hess-17-3371-2013
[5]   伍宇明, 兰恒星, 高星, 等 台风暴雨型滑坡降雨阈值曲线研究: 以福建地区为例[J]. 工程地质学报, 2014, 22 (2): 255- 262
WU Yuming, LAN Hengxing, GAO Xing, et al Rainfall threshold of storm-induced landslides in typhoon areas: a case study of Fujian Province[J]. Journal of Engineering Geology, 2014, 22 (2): 255- 262
doi: 10.3969/j.issn.1004-9665.2014.02.015
[6]   CHEN C W, SAITO H, OGUCHI T Analyzing rainfall-induced mass movements in Taiwan using the soil water index[J]. Landslides, 2017, 14 (3): 1031- 1041
doi: 10.1007/s10346-016-0788-1
[7]   郭子正, 殷坤龙, 刘庆丽, 等 基于位移比模型的三峡库区云阳县域内蠕变型滑坡降雨预警[J]. 地球科学, 2020, 45 (2): 672- 684
GUO Zizheng, YIN Kunlong, LIU Qingli, et al Rainfall warning of creeping landslide in Yunyang County of Three Gorges Reservoir region based on displacement ratio model[J]. Earth Science, 2020, 45 (2): 672- 684
[8]   GABET E J, BURBANK D W, PUTKONEN J K, et al Rainfall thresholds for landsliding in the Himalayas of Nepal[J]. Geomorphology, 2004, 63 (3/4): 131- 143
[9]   MATSUYAMA H, SAITO H, ZEMTSOV V Application of soil water index to landslide prediction in snowy regions: sensitivity analysis in Japan and preliminary results from Tomsk, Russia[J]. Progress in Earth and Planetary Science, 2021, 8 (1): 17
doi: 10.1186/s40645-021-00408-9
[10]   CAINE N The rainfall intensity-duration control of shallow landslides and debris flows[J]. Geografiska Annaler. Series A, Physical Geography, 1980, 62 (1/2): 23- 27
doi: 10.2307/520449
[11]   GUZZETTI F, PERUCCACCI S, ROSSI M, et al Rainfall thresholds for the initiation of landslides in central and southern Europe[J]. Meteorology and Atmospheric Physics, 2007, 98 (3/4): 239- 267
[12]   LI W, LIU C, SCAIONI M, et al Spatio-temporal analysis and simulation on shallow rainfall-induced landslides in China using landslide susceptibility dynamics and rainfall I-D thresholds[J]. Science China Earth Sciences, 2017, 60 (4): 720- 732
doi: 10.1007/s11430-016-9008-4
[13]   MARIN R J, VELÁSQUEZ M F, GARCÍA E F, et al Assessing two methods of defining rainfall intensity and duration thresholds for shallow landslides in data-scarce catchments of the Colombian Andean Mountains[J]. Catena, 2021, 206: 105563
doi: 10.1016/j.catena.2021.105563
[14]   PICIULLO L, CALVELLO M, CEPEDA J M Territorial early warning systems for rainfall-induced landslides[J]. Earth-Science Reviews, 2018, 179: 228- 247
doi: 10.1016/j.earscirev.2018.02.013
[15]   DIKSHIT A, SARKAR R, PRADHAN B, et al Estimating rainfall thresholds for landslide occurrence in the Bhutan Himalayas[J]. Water, 2019, 11 (8): 1616
doi: 10.3390/w11081616
[16]   刘艳辉, 苏永超 四川青川县区域地质灾害气象风险预警模型研究[J]. 工程地质学报, 2019, 27 (1): 134- 143
LIU Yanhui, SU Yongchao Early-warning model of regional geological disasters based on meteorological factor in Qingchuan County, Sichuan Province[J]. Journal of Engineering Geology, 2019, 27 (1): 134- 143
[17]   BRUNETTI M T, PERUCCACCI S, ROSSI M, et al Rainfall thresholds for the possible occurrence of landslides in Italy[J]. Natural Hazards and Earth System Sciences, 2010, 10 (3): 447- 458
doi: 10.5194/nhess-10-447-2010
[18]   ZÊZERE J L, RODRIGUES M L. Rainfall thresholds for landsliding in Lisbon Area (Portugal) [M]// Rybář J, Stemberk J, Wagner P. Landslides . Lisse: Routledge, 2002: 333−338.
[19]   DENNIS M S, JOSEPH E G, JASON W K. Objective definition of rainfall intensity-duration thresholds for post-fire flash floods and debris flows in the area burned by the Waldo Canyon Fire, Colorado, USA [M]// Lollino G, Giordan D, Crosta G B, et al. Engineering geology for society and territory: Volume 2 . Cham: Springer International Publishing, 2015: 621−624.
[20]   谢剑明, 刘礼领, 殷坤龙, 等 浙江省滑坡灾害预警预报的降雨阀值研究[J]. 地质科技情报, 2003, 22 (4): 101- 105
XIE Jianming, LIU Liling, YIN Kunlong, et al Study on the threshold valves of rainfall of landslide hazards for early warning and prediction in Zhejiang Province[J]. Geological Science and Technology Information, 2003, 22 (4): 101- 105
[21]   殷坤龙, 张桂荣, 龚日祥, 等 基于Web-GIS的浙江省地质灾害实时预警预报系统设计[J]. 水文地质工程地质, 2003, (3): 19- 23
YIN Kunlong, ZHANG Guirong, GONG Rixiang, et al A real time warning system design of geo-hazards supported by Web-GIS in Zhejiang Province, China[J]. Hydrogeology and Engineering Geology, 2003, (3): 19- 23
doi: 10.3969/j.issn.1000-3665.2003.03.005
[22]   鲍其云, 麻土华, 李长江, 等 浙江62个丘陵山区县引发滑坡的降雨强度: 历时阈值[J]. 科技通报, 2016, 32 (5): 48- 55
BAO Qiyun, MA Tuhua, LI Changjiang, et al Rainfall intensity-duration thresholds for the initiation of landslides in 62 hilly and mountainous counties of Zhejiang Province[J]. Bulletin of Science and Technology, 2016, 32 (5): 48- 55
doi: 10.3969/j.issn.1001-7119.2016.05.010
[23]   中国气象局. 暴雨诱发的地质灾害气象风险预警等级: QX/T 487—2019 [S]. 北京: 气象出版社, 2019.
[24]   林冰. 大连市降雨特性与雨水资源化的研究[D]. 大连: 大连理工大学, 2006.
LIN Bin. Research on rainfall characteristics and rainwater resources in Dalian City [D]. Dalian: Dalian University of Technology, 2006.
[25]   刘艳辉, 唐灿, 李铁锋, 等 地质灾害与降雨雨型的关系研究[J]. 工程地质学报, 2009, 17 (5): 656- 661
LIU Yanhui, TANG Can, LI Tiefeng, et al Statistical relations between geo-hazards and rain-type[J]. Journal of Engineering Geology, 2009, 17 (5): 656- 661
doi: 10.3969/j.issn.1004-9665.2009.05.012
[26]   刘书豪. 降雨条件下的输电线路滑坡风险评估与预警技术研究[D]. 武汉: 中国地质大学, 2021.
LIU Shuhao. Research on risk assessment and early warning of landslides triggered by rainfall along electrical power transmission line [D]. Wuhan: China University of Geosciences, 2021.
[27]   岑国平, 沈晋, 范荣生 城市设计暴雨雨型研究[J]. 水科学进展, 1998, 9 (1): 41- 46
CEN Guoping, SHEN Jin, FAN Rongsheng Research on rainfall pattern of urban design storm[J]. Advances of Water Science, 1998, 9 (1): 41- 46
[28]   TUFANO R, FORMETTA G, CALCATERRA D, et al Hydrological control of soil thickness spatial variability on the initiation of rainfall-induced shallow landslides using a three-dimensional model[J]. Landslides, 2021, 18 (10): 3367- 3380
doi: 10.1007/s10346-021-01681-x
[29]   VITHANA S B, NAKAMURA S, GIBO S, et al Correlation of large displacement drained shear strength of landslide soils measured by direct shear and ring shear devices[J]. Landslides, 2012, 9 (3): 305- 314
doi: 10.1007/s10346-011-0301-9
[30]   RAO S M Role of apparent cohesion in the stability of Dominician allophane soil slopes[J]. Engineering Geology, 1996, 43 (4): 265- 279
doi: 10.1016/S0013-7952(96)00036-1
[31]   SUN S, PANG B, HU J, et al Characteristics and mechanism of a landslide at Anqian iron mine, China[J]. Landslides, 2021, 18 (7): 2593- 2607
doi: 10.1007/s10346-021-01671-z
[32]   吴宏伟, 陈守义, 庞宇威 雨水入渗对非饱和土坡稳定性影响的参数研究[J]. 岩土力学, 1999, 20 (1): 1- 14
NG Wangwai Charles, CHEN Shouyi, PANG Yuewai Parametric study of effects of rain infiltration on unsaturated slopes[J]. Rock and Soil Mechanics, 1999, 20 (1): 1- 14
doi: 10.3969/j.issn.1000-7598.1999.01.001
[33]   LÓPEZ-VINIELLES J, EZQUERRO P, FERNÁNDEZ-MERODO J A, et al Remote analysis of an open-pit slope failure: Las Cruces case study, Spain[J]. Landslides, 2020, 17 (9): 2173- 2188
doi: 10.1007/s10346-020-01413-7
[34]   ZHANG J, LUO Y, ZHOU Z, et al Research on the rainfall-induced regional slope failures along the Yangtze River of Anhui, China[J]. Landslides, 2021, 18 (5): 1801- 1821
doi: 10.1007/s10346-021-01623-7
[35]   ZHUANG Y, XING A, JIANG Y, et al Typhoon, rainfall and trees jointly cause landslides in coastal regions[J]. Engineering Geology, 2022, 298: 106561
[36]   鲜木斯艳·阿布迪克依木. 高植被覆盖区公路边坡地质灾害危险性评价研究[D]. 赣州: 江西理工大学, 2022.
Xianmusiyan Abudikeyimu. Study on risk assessment of geological hazards of highway slope in high vegetation coverage area [D]. Ganzhou: Jiangxi University of Science and Technology, 2022.
[37]   MAIR A, FARES A Comparison of rainfall interpolation methods in a mountainous region of a tropical island[J]. Journal of Hydrologic Engineering, 2011, 16 (4): 371- 383
doi: 10.1061/(ASCE)HE.1943-5584.0000330
[38]   浙江省人民政府办公厅. 浙江省突发地质灾害应急预案: 浙政办发[2021]8号[EB/OL]. [2023-01-20]. https://www.zj.gov.cn/art/2021/2/18/art_1229019365_2231529.html.
[1] Haiying LIU,Xianzhe CAI. Choice of innovation type for China's industrial green transformation under environmental regulation[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(1): 188-196.
[2] Kai-lun HE,Jian LV,Lin LI,Zhao XU,Wei-jie PAN. Evaluation of exoskeleton wearing fatigue based on surface electromyography and gait[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(10): 2077-2085.
[3] Miao HE,Fen-hua BAI,Zhuo YU,Tao SHEN. Publicly verifiable secret sharing technology in blockchain[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 306-312.
[4] Zhao-wen WANG,Hao ZHOU,Jia-wei LUO,Qi-wei WU,Ke-fa CEN. Research on thermal conductivity of storage tank foundation materials after molten salt leakage[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 137-143.
[5] Shi-da CHEN,Qiang LIU,Liang HAN. Gradient sparsification compression approach to reducing communication in distributed training[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 386-394.
[6] Yu-ming YAN,Jian-feng HE,Shu-zhao LI,Hui-min YU,Feng WANG,Zhou-feng REN. Identity recognition under real scenes[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2022-2032.
[7] Yi-han LUO,Jie-ren CHENG,Xiang-yan TANG,Ming-wang OU,Tian WANG. Early warning model of DDoS attack situation based on adaptive threshold[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 704-711.
[8] Ying-cong WANG,Ling ZHANG. Swarm intelligence labor division algorithm for solving unequal circle packing problem[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2129-2138.
[9] LIU Wei-lun, ZHANG Heng-yang, ZHENG Bo, GAO Wei-ting. Multi-channel media access control protocol with differential services in airborne network[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 99-106.
[10] ZHU Tao-tao, XIANG Xiao-yan, CHEN Chen, MENG Jian-yi, YAN Xiao-lang. Timing error resilient clock gate design for wide-voltage application[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(9): 1796-1803.
[11] DENG Xuan-xuan, MA Gang, ZHOU Wei, CHANG Xiao-lin. Effects of local constraints patterns on fragmentation of single grain[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(7): 1329-1337.
[12] GUO Zhong-hao, REN Yu-peng, QIN Yi, WANG Xin, GU Juan, MA Jing-yu, ZOU Le-jun, SHEN Xiao-hua. Cloud detection method based on scatter plot for Landsat 8 image with adjustable threshold[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(7): 1423-1430.
[13] CAO Yun, XI Zhan-wen, WANG Jiong, NIE Wei-rong, KONG Nan. Influence of UV-LIGA fabrication error on MEMS omnidirectional inertial switch's performance[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(9): 1815-1823.
[14] DAI Cai-yan, CHEN Ling, LI Bin, CHEN Bo-lun. Sampling-based link prediction in complex networks[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 554-561.
[15] JIANG Bo, XIE Lun, LIU Xin, HAN Jing, WANG Zhi-liang. Micro-expression spotting using optical flow magnitude estimation[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 577-583.