Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2019, Vol. 53 Issue (1): 99-106    DOI: 10.3785/j.issn.1008-973X.2019.01.011
Computer Technology     
Multi-channel media access control protocol with differential services in airborne network
LIU Wei-lun, ZHANG Heng-yang, ZHENG Bo, GAO Wei-ting
Information and Navigation College, Air Force Engineering University, Xi’an 710077, China
Download:   PDF(1038KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A differential priority based multi-channel media access control protocol was proposed in order to guarantee the system capacity and strict demands of timeliness and reliability on the high priority traffic in airborne networks. Two different channel access strategies were used which are multi-channel random access and multi-channel busy-idle access for high and low priority traffic respectively. A backoff mechanism based on the channel loads was adopted to dynamically adjust the connection window according to the busy degree of channels. Then differential service can be effectively provided. The optimal channel load interval and the access threshold of the low priority traffic in different number of channels as well as all system performance expressions were derived by establishing the multi-channel busy-idle collision model, backoff model and combining with the QoS demand of high priority traffic. The simulation results show that the protocol can ensure the strict timeliness (<2 ms), reliability (>99%) of high priority traffic and system capacity (>10 Mbit/s). The performance was improved much by comparing with priority frequency hopping (PFH-MAC) and prioritized adaptive jitter based media access control (PAJ-MAC) protocols.



Received: 28 May 2018      Published: 07 January 2019
CLC:  TP393  
Cite this article:

LIU Wei-lun, ZHANG Heng-yang, ZHENG Bo, GAO Wei-ting. Multi-channel media access control protocol with differential services in airborne network. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(1): 99-106.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.01.011     OR     http://www.zjujournals.com/eng/Y2019/V53/I1/99


优先级区分服务的机载网络媒质接入控制协议

为了保障机载网络的系统容量及最高优先级业务严格的时效性与可靠性需求,提出区分优先级的媒质接入控制协议. 该协议对高、低优先级业务,分别采用多信道随机接入和多信道忙闲接入2种不同的信道接入策略,结合竞争窗口随信道忙闲程度自适应调整的退避机制,实现了多优先级区分服务. 通过建立多信道忙闲碰撞模型和退避模型,根据高优先级业务的QoS需求,计算求解不同信道数量下低优先级业务的最优负载取值区间和接入门限以及各项系统性能的数学表达式. 仿真结果表明,该协议不仅具有较高的系统容量(>10 Mb/s),而且能够保证高优先级业务严格的时效性(<2 ms)、可靠性(>99%)需求,与带差分服务的跳频MAC (PFH-MAC)协议和区分优先级的自适应抖动MAC (PAJ-MAC)协议相比,性能有较大的提升.

[1] WAN Y, NAMUDURI K, ZHOU Y, et al. A smooth-turn mobility model for airborne networks[J]. IEEE Transactions on Vehicular Technology, 2013, 62(7):3359-3370.
[2] XIE J F, WAN Y, KIM J H, et al. A survey and analysis of mobility models for airborne networks[J]. IEEE Communications Surveys and Tutorials, 2014, 16(3):1221-1238.
[3] CHRISTMANN A, LEVETT D. Design considerations for next generation traction drive IGBT based power modules[C]//Transportation Electrification Conference and Expo (ITEC). Dearborn:IEEE, 2016:1-5.
[4] KWAH K J, SAGDUYU Y, YACKOSKI J, et al. Airborne network evaluation:challenges and high fidelity emulation solution[J]. IEEE Communications Magazine, 2014, 52(10):30-36.
[5] CAO S, LEE V. A novel adaptive TDMA-based MAC protocol for VANETs[J]. IEEE Communications Letters, 2018, 22(3):614-617.
[6] SU Y. A TDMA MAC scheduling protocol algorithm for wireless mobile Ad Hoc network and its performance analyses performance analyses[C]//5th International Conference on Computer Science and Network Technology (ICCSNT). Changchun:IEEE, 2016:471-475.
[7] ZHANG X M. New method for analyzing nonsaturated IEEE 802.11 DCF networks[J]. IEEE Wireless Communications Letters, 2013, 2(2):243-246.
[8] WAN Y, NAMUDURI K, ZHOU Y, et al. Fair and efficient full Duplex MAC protocol based on the IEEE 802.11 DCF[C]//27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). Valencia:IEEE, 2016:1-6.
[9] CHOI J. NOMA-based random access with multi-channel ALOHA[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(12):2736-2743.
[10] HUANG K S, HWANG C K, LEE B K, et al. An exact closed-form formula of collision probability in diverse multiple access communication systems with frame slotted aloha protocol[J]. Journal of the Franklin Institute, 2017, 354(13):5739-5752.
[11] HERDER J C, STEVENS J A. Method and architecture for TTNT symbol rate scaling modes:US, US 7839900 B1[P]. 2010-11-23.
[12] 赵玮, 郑博, 张衡阳, 等. 基于RS-Polar编码的机载战术网络MAC协议[J]. 计算机工程, 2017, 43(12):83-87 ZHAO Wei, ZHENG Bo, ZHANG Heng-yang, et al. MAC protocol based on RS-Polar coding for airborne tactical network[J]. Computer Engineering, 2017, 43(12):83-87
[13] 高晓琳, 韩丰, 晏坚, 等. 一种支持QoS的航空自组织网络无反馈MAC协议建模[J]. 北京航空航天大学学报, 2016, 42(6):1169-1175 GAO Xiao-lin, HAN Feng, YAN Jian, et al. Model providing QoS guarantee for feedback-free MAC in aeronautical AdHoc networks[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(6):1169-1175
[14] 王叶群, 杨峰, 黄国策, 等. 一种航空自组网中带差分服务的跳频MAC协议建模[J]. 软件学报, 2013, 24(9):2214-2225 WANG Ye-qun, YANG Feng, HUANG Guo-ce, et al. Media access control protocol with differential service in aeronautical frequency-hopping Ad Hoc networks[J]. Journal of Software, 2013, 24(9):2214-2225
[15] 肖雷蕾, 张衡阳, 毛玉泉, 等. 一种区分优先级自适应抖动的媒质接入控制协议[J]. 西安交通大学学报, 2015, 49(10):123-129 XIAO Lei-lei, ZHANG Heng-yang, MAO Yu-quan, et al. An adaptive jitter based media access control protocol with priorities[J]. Journal of Xi'an Jiao Tong University, 2015, 49(10):123-129
[16] ZHANG B, HU Z, XING K. Performance of RS-Turbo concatenated code in AOS[C]//11th International Conference on Electronic Measurement and Instruments. Harbin:IEEE, 2013:983-987.

[1] LAI Xiao-han, WEN Hao-xiang, CHEN Long-dao. Energy efficient routing for wireless sensor networks in intertidal environment[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(12): 2414-2422.
[2] LIU Zhen, WU Ze-hui, CAO Yan, WEI Qiang. Software vulnerable code reuse detection method based on vulnerability fingerprint[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(11): 2180-2190.
[3] QI Xiao-gang, WANG Zhen-yu, LIU Li-fang, LIU Xing-cheng, MA Jiu-long. Reliable and efficient routing of wireless sensors and actuator networks[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1964-1972.
[4] HU Gang, XU Xiang Xiang, GUO Xiu-cheng. Importance calculation of complex network nodes based on interpretive structural modeling method[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1989-1997.
[5] REN Zhi-yuan, HOU Xiang-wang, GUO Kai, ZHANG Hai-lin, CHEN Chen. Distributed satellite cloud-fog network and strategy of latency and power consumption[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(8): 1474-1481.
[6] JIA Wen-chao, HU Rong-gui, SHI Fan, XU Cheng-xi. Injection vulnerability threat detection method with multi-feature correlation[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(3): 524-530.
[7] LI Bing, JIN Tao, CHEN Shuai. Method to improve reliability of SRAM PUFs key generation[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(1): 133-141.
[8] YU Yang, XIA Chun-he, HU Xiao-yun. Defense scheme generation method using mixed path attack graph[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(9): 1745-1759.
[9] LUO You-qiang, LIU Sheng-li, YAN Meng, WU Dong-ying. DNS tunnel Trojan detection method based on communication behavior analysis[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(9): 1780-1787.
[10] YIN Ge-Ting, ZHOU Bei, ZHANG Shuai, XU Bin, CHEN Yi-Xi, JIANG Dan. QoS-based bottom-up service replacement for Web service composition[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(4): 700-709.
[11] WANG Rui-Qin, KONG Fan-Qing, BO Dun. Unsupervised word sense disambiguation based on WordNet[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(4): 732-737.
[12] ZHOU Jiang, YING Jing, TUN Meng-Hui. Multifactor prediction routing protocol based on
characteristic categorization of opportunistic networks
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(3): 413-419.
[13] OU Yang-Yang, CHEN Yu-Feng, CHEN Xi-Yuan, et al. Ontology modeling of domain knowledge in semantic learning Web[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(09): 1591-1596.
[14] KONG Xiang-Jie, CHEN Guo-Jiang, LIANG Tong-Hai. Intelligent coordinated control of traffic flow on road network  with bus-priority[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(6): 1026-1031.
[15] WANG Jian, SUN Jian-Ling, WANG Xin-Yu, et al. Partial preemptive real-time scheduling algorithm in software fault-tolerant model[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(6): 1047-1052.