Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (4): 808-816    DOI: 10.3785/j.issn.1008-973X.2024.04.016
    
Effect of porosity distribution on performance of proton exchange membrane fuel cells
Yujie YIN1,2(),Feng SUN3,Dandan SU1,2,*(),Shuaichang QIN1,2,Xuliang NIE1,2,Bin PANG1,2
1. School of Quality and Technical Supervision, Hebei University, Baoding 071002, China
2. Hebei Technology Innovation Center for Lightweight of New Energy Vehicle Power System, Baoding 071002, China
3. Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100080, China
Download: HTML     PDF(5690KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The three-dimensional models of proton exchange membrane fuel cell (PEMFC) with parallel, serpentine and leaf vein flow fields were established, and the oxygen distribution characteristics of catalytic layer (CL) in different models were analyzed. The corresponding porosity gradient distribution schemes in gas diffusion layer (GDL) were proposed for different flow models. The oxygen molar fraction distribution, membrane current density distribution, polarization curve and power density curve in different flow field models were analyzed. Results show that the proposed porosity gradient distribution scheme can effectively enhance the oxygen transfer from GDL to CL, improve the local oxygen supply deficiency of CL, and enhance the output performance of PEMFC. Compared with the parallel, serpentine and leaf vein flow field models of the conventional porosity distribution, the peak power density of the flow field model using the porosity gradient distribution increased by 8.59%, 18.26% and 15.46%, respectively.



Key wordsproton exchange membrane fuel cell (PEMFC)      flow field      gas diffusion layer      porosity      catalytic layer     
Received: 13 March 2023      Published: 27 March 2024
CLC:  TM 911.4  
Fund:  国家自然科学基金资助项目(51902081);河北省自然科学基金资助项目(E2021201032);保定市科技计划资助项目(2074P019);河北大学高层次人才科研启动项目(521100222037).
Corresponding Authors: Dandan SU     E-mail: yyjhbu@163.com;sudandanhbu@hbu.edu.cn
Cite this article:

Yujie YIN,Feng SUN,Dandan SU,Shuaichang QIN,Xuliang NIE,Bin PANG. Effect of porosity distribution on performance of proton exchange membrane fuel cells. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 808-816.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.04.016     OR     https://www.zjujournals.com/eng/Y2024/V58/I4/808


孔隙率分布对质子交换膜燃料电池性能的影响

建立平行、蛇形及叶脉流场的三维质子交换膜燃料电池(PEMFC)模型,分析不同模型中催化层(CL)的氧气分布特征. 针对不同流场模型提出对应的气体扩散层(GDL)孔隙率梯度分布方案,分析不同流场模型中氧气摩尔分数分布、膜电流密度分布、极化曲线与功率密度曲线. 结果表明,所提GDL孔隙率梯度分布方案能够强化氧气由GDL向CL的传输效果,改善CL上局部氧气供应不足现象,提升PEMFC输出性能. 与常规孔隙率分布的平行、蛇形及叶脉流场模型相比,采用孔隙率梯度分布的流场模型的峰值功率密度分别提高了8.59%,18.26%和15.46%.


关键词: 质子交换膜燃料电池(PEMFC),  流场,  气体扩散层,  孔隙率,  催化层 
Fig.1 SEM images of gas diffusion layer for different porosity
Fig.2 Geometric models of flow field for proton exchange membrane fuel cell
参数数值参数数值
流道宽度/mm1.0阴极入口速度/(m·s?15.180 7
流道高度/mm1.0阳极入口速度/(m·s?11.450 6
肋板宽度/mm1.0加湿温度/K301.15
GDL宽度/mm2.54GDL渗透率/m21.18×10?13
膜厚度/mm0.1多孔电极渗透率/m22.36×10?14
CL厚度/mm0.05阴极传递系数1.0
电池温度/K333.15入口水的摩尔分数0.374 98
参考压力/Pa101 330入口氢的摩尔分数0.625 02
开路电压/V0.97入口氧的摩尔分数0.131 26
GDL电导率/(S·m?14 000入口氮的摩尔分数0.493 77
阴极化学计量比3相对湿度/%100
阳极化学计量比2
Tab.1 Geometric parameters and operating conditions of proton exchange membrane fuel cell model
Fig.3 Mesh independence verification of proton exchange membrane fuel cell model
Fig.4 Comparison of three curves of simulation polarization with experimental data
Fig.5 Conventional porosity distribution scheme of parallel flow field, oxygen mole fraction distribution of catalytic layer corresponding to three schemes (Uw=0.54 V)
Fig.6 Gradient porosity distribution scheme of parallel flow, oxygen mole fraction distribution of catalytic layer corresponding to three schemes (Uw=0.54 V)
Fig.7 Average oxygen molar fraction of different porosity distribution schemes in parallel flow fields
Fig.8 Distribution of membrane current density for different porosity distribution schemes in parallel flow fields (Uw=0.54 V)
Fig.9 Average membrane current density of different porosity distribution schemes in parallel flow fields
Fig.10 Polarization curves and power density curves of different porosity distribution schemes in parallel flow fields
Fig.11 Conventional porosity distribution scheme of serpentine flow field, oxygen mole fraction distribution of catalytic layer corresponding to three schemes (Uw=0.54 V)
Fig.12 Gradient porosity distribution scheme of serpentine flow, oxygen mole fraction distribution of catalytic layer corresponding to five schemes (Uw=0.54 V)
Fig.13 Distribution of membrane current density for different porosity distribution schemes in serpentine flow fields (Uw=0.54 V)
Fig.14 Average membrane current density of different porosity distribution schemes in serpentine flow fields
Fig.15 Polarization curves and power density curves of different porosity distribution schemes in serpentine flow fields
Fig.16 Conventional porosity distribution scheme of leaf vein flow field, oxygen mole fraction distribution of catalytic layer corresponding to three schemes (Uw=0.54 V)
Fig.17 Gradient porosity distribution scheme of leaf vein flow field, oxygen mole fraction distribution of catalytic layer corresponding to three schemes (Uw=0.54 V)
Fig.18 Average oxygen mole fraction of different porosity distribution schemes in leaf vein flow fields
Fig.19 Distribution of membrane current density for different porosity distribution schemes in leaf vein flow fields (Uw=0.54 V)
Fig.20 Average membrane current density of different porosity distribution schemes in leaf vein flow fields
Fig.21 Polarization curves and power density curves of different porosity distribution schemes in leaf vein flow fields
[1]   衣宝廉, 俞红梅, 侯中军, 等. 氢燃料电池[M]. 北京: 化学工业出版社, 2021: 1–4.
[2]   詹宁华, 吴伟, 汪双凤 PEMFC梯度扩散层内两相传输特性的孔隙网络模拟[J]. 工程热物理学报, 2019, 40 (1): 109- 113
ZHAN Ninghua, WU Wei, WANG Shuangfeng Pore network simulation of two-phase transport characteristics in gradient diffusion layer of PEMFC[J]. Journal of Engineering Thermophysics, 2019, 40 (1): 109- 113
[3]   张宁, 张小娟 阴极扩散层孔隙率不同分布对PEMFC性能的影响[J]. 电源技术, 2017, 41 (9): 1296- 1298
ZHANG Ning, ZHANG Xiaojuan Influence of different porosity distribution in cathode GDL on FEMFC performance[J]. Chinese Journal of Power Sources, 2017, 41 (9): 1296- 1298
[4]   刘 舜, 徐洪涛, 张拴羊, 等 扩散层孔隙率对PEMFC性能影响的模拟研究[J]. 热能动力工程, 2021, 36 (7): 122- 128
LIU Shun, XU Hongtao, ZHANG Shuanyang, et al Simulation study on the effect of diffusion layer porosity on PEMFC performance[J]. Journal of Engineering for Thermal Energy and Power, 2021, 36 (7): 122- 128
[5]   ABRAHAM P B, MURUGAVEL K K Influence of catalyst layer and gas diffusion layer porosity in proton exchange membrane fuel cell performance[J]. Electrochimica Acta, 2021, 389: 138793
doi: 10.1016/j.electacta.2021.138793
[6]   XIA L, NI M, HE Q, et al Optimization of gas diffusion layer in high temperature PEMFC with the focuses on thickness and porosity[J]. Applied Energy, 2021, 300: 117357
doi: 10.1016/j.apenergy.2021.117357
[7]   程植源, 周荣良, 李嘉颀, 等 气体扩散层孔隙率梯度对质子交换膜燃料电池水管理的影响[J]. 内燃机与动力装置, 2022, 39 (3): 41- 47
CHENG Zhiyuan, ZHOU Rongliang, LI Jiaqi, et al Effect of porosity gradient of gas diffusion layer on water management of PEMFC[J]. Internal Combustion Engine and Powerplant, 2022, 39 (3): 41- 47
[8]   JHA V, HARIHARAN R, KRISHNAMURTHY B A 3 dimensional numerical model to study the effect of GDL porosity on high temperature PEM fuel cells[J]. International Journal of Heat and Mass Transfer, 2020, 161: 120311
doi: 10.1016/j.ijheatmasstransfer.2020.120311
[9]   YANG J S, CLEEMANN L N, STEENBERG T, et al High molecular weight polybenzimidazole membranes for high temperature PEMFC[J]. Fuel Cells, 2014, 14 (1): 7- 15
doi: 10.1002/fuce.201300070
[10]   DONG P, XIE G, NI M The mass transfer characteristics and energy improvement with various partially blocked flow channels in a PEM fuel cell[J]. Energy, 2020, 206: 117977
doi: 10.1016/j.energy.2020.117977
[11]   CHANG H M, LIN C W, CHANG M H, et al Optimization of polytetrafluoroethylene content in cathode gas diffusion layer by the evaluation of compression effect on the performance of a proton exchange membrane fuel cell[J]. Journal of Power Sources, 2011, 196 (8): 3773- 3780
doi: 10.1016/j.jpowsour.2010.12.090
[12]   李姣, 郭航, 叶芳, 等 扩散层结构对质子交换膜燃料电池性能的影响[J]. 节能, 2020, 39 (4): 72- 74
LI Jiao, GUO Hang, YE Fang, et al Influence of gas diffusion layer structure on the performance of proton exchange membrane fuel cells[J]. Energy Conservation, 2020, 39 (4): 72- 74
[13]   KANCHAN B K, RANDIVE P, PATI S Numerical investigation of multi-layered porosity in the gas diffusion layer on the performance of a PEM fuel cell[J]. International Journal of Hydrogen Energy, 2020, 45 (41): 21836- 21847
doi: 10.1016/j.ijhydene.2020.05.218
[1] Chao-jun XUE,Hai-bo WANG,Yu-peng CHEN. Optimal design and experimental study of thrust adsorption wall-climbing robot[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1181-1190, 1198.
[2] Xin-yu XU,Nan HU,Li-wu FAN. Coupled water-vapor-heat transport simulation on in-situ thermal conduction heating remediation of soil[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 144-151.
[3] Huan-long LIU,Chi-xin XIE,Da-fa LI,Jia-wei WANG. Flow field distribution of splash lubrication of gearbox and churning gear torque loss[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 875-886.
[4] Nan-nan ZHAO,Liang HU,Kai MAO,Wen-yu CHEN,Xin FU. Hybrid determination method for acoustic field of ultrasonic volumetric flowmeter[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1466-1473.
[5] Wei LI,Ji-yu ZOU,Peng HU. Urban flood simulation based on porosity and local time step[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 614-622.
[6] Zhan-hao HU,Jun-tao FENG,De-ren SHENG,Jian-hong CHEN,Wei LI. Numerical simulation for vibration of interferometric probein wet steam flow field[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1157-1163.
[7] Rong BIAN,Wen-juan LOU,Hang LI,Xia-shuang ZHAO,Li-gang ZHANG. Aerodynamic characteristics of steel tubular transmission tower in different flow fields[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 910-916.
[8] Shi-tang KE,Wen-lin YU,Lu XU,Ling-yun DU,Wei YU,Qing YANG. Flow fields and aerodynamic loads of wind turbine considering yaw effect under wind and rain interaction[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1936-1945.
[9] HE Le-lu, FAN Xiao-qiang, HUANG Zheng-liang, WANG Jing-dai, YANG Yong-rong, LI Yong, YU Huan-jun. Investigation of circumferential distribution of slag deposited on slag screen of Shell coal gasifier[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 771-776.
[10] LIU Jie, BAi Yu chuan,XU Hai jue. Mass transport and flow field of power law muddy bed under surface waves[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(9): 1798-1805.
[11] YAO Dan, ZHANG Jie, WANG Rui qian, XIAO Xin biao, JIN Xue song. Experiment and simulation optimization on characteristics of sound absorption of mattress material in sleeper EMU[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(8): 1486-1492.
[12] KE Shi tang, ZHU Peng. Wind loads of frequency domain characteristics for large cooling towers with aerodynamic measures based on large eddy simulation[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(11): 2143-2149.
[13] XU Ri-qing, XU Li-yang, DENG Yi-wen, ZHU Yi-hong. Experimental study on soft clay contact area based on SEM and IPP[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(8): 1417-1425.
[14] YAO Xiao-li, YI Si-yang, FAN Li-wu, XU Xu, YU Zi-tao, GE Jian.
Effective thermal conductivity of moist aerated concrete with different porosities
[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(6): 1101-1107.
[15] SHAO Bi-juan,LI Xiang-peng,LI Ting-ting,WANG Jia-de. Measurement of flow field in plug flow electrochemical reactor with mesh plate electrode[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(1): 130-135.