|
|
Effect of porosity distribution on performance of proton exchange membrane fuel cells |
Yujie YIN1,2(),Feng SUN3,Dandan SU1,2,*(),Shuaichang QIN1,2,Xuliang NIE1,2,Bin PANG1,2 |
1. School of Quality and Technical Supervision, Hebei University, Baoding 071002, China 2. Hebei Technology Innovation Center for Lightweight of New Energy Vehicle Power System, Baoding 071002, China 3. Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100080, China |
|
|
Abstract The three-dimensional models of proton exchange membrane fuel cell (PEMFC) with parallel, serpentine and leaf vein flow fields were established, and the oxygen distribution characteristics of catalytic layer (CL) in different models were analyzed. The corresponding porosity gradient distribution schemes in gas diffusion layer (GDL) were proposed for different flow models. The oxygen molar fraction distribution, membrane current density distribution, polarization curve and power density curve in different flow field models were analyzed. Results show that the proposed porosity gradient distribution scheme can effectively enhance the oxygen transfer from GDL to CL, improve the local oxygen supply deficiency of CL, and enhance the output performance of PEMFC. Compared with the parallel, serpentine and leaf vein flow field models of the conventional porosity distribution, the peak power density of the flow field model using the porosity gradient distribution increased by 8.59%, 18.26% and 15.46%, respectively.
|
Received: 13 March 2023
Published: 27 March 2024
|
|
Fund: 国家自然科学基金资助项目(51902081);河北省自然科学基金资助项目(E2021201032);保定市科技计划资助项目(2074P019);河北大学高层次人才科研启动项目(521100222037). |
Corresponding Authors:
Dandan SU
E-mail: yyjhbu@163.com;sudandanhbu@hbu.edu.cn
|
孔隙率分布对质子交换膜燃料电池性能的影响
建立平行、蛇形及叶脉流场的三维质子交换膜燃料电池(PEMFC)模型,分析不同模型中催化层(CL)的氧气分布特征. 针对不同流场模型提出对应的气体扩散层(GDL)孔隙率梯度分布方案,分析不同流场模型中氧气摩尔分数分布、膜电流密度分布、极化曲线与功率密度曲线. 结果表明,所提GDL孔隙率梯度分布方案能够强化氧气由GDL向CL的传输效果,改善CL上局部氧气供应不足现象,提升PEMFC输出性能. 与常规孔隙率分布的平行、蛇形及叶脉流场模型相比,采用孔隙率梯度分布的流场模型的峰值功率密度分别提高了8.59%,18.26%和15.46%.
关键词:
质子交换膜燃料电池(PEMFC),
流场,
气体扩散层,
孔隙率,
催化层
|
|
[1] |
衣宝廉, 俞红梅, 侯中军, 等. 氢燃料电池[M]. 北京: 化学工业出版社, 2021: 1–4.
|
|
|
[2] |
詹宁华, 吴伟, 汪双凤 PEMFC梯度扩散层内两相传输特性的孔隙网络模拟[J]. 工程热物理学报, 2019, 40 (1): 109- 113 ZHAN Ninghua, WU Wei, WANG Shuangfeng Pore network simulation of two-phase transport characteristics in gradient diffusion layer of PEMFC[J]. Journal of Engineering Thermophysics, 2019, 40 (1): 109- 113
|
|
|
[3] |
张宁, 张小娟 阴极扩散层孔隙率不同分布对PEMFC性能的影响[J]. 电源技术, 2017, 41 (9): 1296- 1298 ZHANG Ning, ZHANG Xiaojuan Influence of different porosity distribution in cathode GDL on FEMFC performance[J]. Chinese Journal of Power Sources, 2017, 41 (9): 1296- 1298
|
|
|
[4] |
刘 舜, 徐洪涛, 张拴羊, 等 扩散层孔隙率对PEMFC性能影响的模拟研究[J]. 热能动力工程, 2021, 36 (7): 122- 128 LIU Shun, XU Hongtao, ZHANG Shuanyang, et al Simulation study on the effect of diffusion layer porosity on PEMFC performance[J]. Journal of Engineering for Thermal Energy and Power, 2021, 36 (7): 122- 128
|
|
|
[5] |
ABRAHAM P B, MURUGAVEL K K Influence of catalyst layer and gas diffusion layer porosity in proton exchange membrane fuel cell performance[J]. Electrochimica Acta, 2021, 389: 138793
doi: 10.1016/j.electacta.2021.138793
|
|
|
[6] |
XIA L, NI M, HE Q, et al Optimization of gas diffusion layer in high temperature PEMFC with the focuses on thickness and porosity[J]. Applied Energy, 2021, 300: 117357
doi: 10.1016/j.apenergy.2021.117357
|
|
|
[7] |
程植源, 周荣良, 李嘉颀, 等 气体扩散层孔隙率梯度对质子交换膜燃料电池水管理的影响[J]. 内燃机与动力装置, 2022, 39 (3): 41- 47 CHENG Zhiyuan, ZHOU Rongliang, LI Jiaqi, et al Effect of porosity gradient of gas diffusion layer on water management of PEMFC[J]. Internal Combustion Engine and Powerplant, 2022, 39 (3): 41- 47
|
|
|
[8] |
JHA V, HARIHARAN R, KRISHNAMURTHY B A 3 dimensional numerical model to study the effect of GDL porosity on high temperature PEM fuel cells[J]. International Journal of Heat and Mass Transfer, 2020, 161: 120311
doi: 10.1016/j.ijheatmasstransfer.2020.120311
|
|
|
[9] |
YANG J S, CLEEMANN L N, STEENBERG T, et al High molecular weight polybenzimidazole membranes for high temperature PEMFC[J]. Fuel Cells, 2014, 14 (1): 7- 15
doi: 10.1002/fuce.201300070
|
|
|
[10] |
DONG P, XIE G, NI M The mass transfer characteristics and energy improvement with various partially blocked flow channels in a PEM fuel cell[J]. Energy, 2020, 206: 117977
doi: 10.1016/j.energy.2020.117977
|
|
|
[11] |
CHANG H M, LIN C W, CHANG M H, et al Optimization of polytetrafluoroethylene content in cathode gas diffusion layer by the evaluation of compression effect on the performance of a proton exchange membrane fuel cell[J]. Journal of Power Sources, 2011, 196 (8): 3773- 3780
doi: 10.1016/j.jpowsour.2010.12.090
|
|
|
[12] |
李姣, 郭航, 叶芳, 等 扩散层结构对质子交换膜燃料电池性能的影响[J]. 节能, 2020, 39 (4): 72- 74 LI Jiao, GUO Hang, YE Fang, et al Influence of gas diffusion layer structure on the performance of proton exchange membrane fuel cells[J]. Energy Conservation, 2020, 39 (4): 72- 74
|
|
|
[13] |
KANCHAN B K, RANDIVE P, PATI S Numerical investigation of multi-layered porosity in the gas diffusion layer on the performance of a PEM fuel cell[J]. International Journal of Hydrogen Energy, 2020, 45 (41): 21836- 21847
doi: 10.1016/j.ijhydene.2020.05.218
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|