Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (10): 1915-1922    DOI: 10.3785/j.issn.1008-973X.2023.10.001
    
Dynamic knowledge graph inference method combining static facts and repeated historical facts
Dong LIN1(),Yong-qiang LI1,*(),Xiang QIU1,Yuan-jing FENG1,Bi-feng XIE2
1. School of Information Engineering, Zhejiang University of Technology, Hangzhou 310012, China
2. Hangzhou Fengjing Technology Company, Hangzhou 310000, China
Download: HTML     PDF(856KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A static-historical network (Sta-HisNet) method combining static facts and repeating historical facts was proposed, aiming at the problem that existing dynamic knowledge graph reasoning methods tend to overlook the vast amount of static information and repeating historical facts present in the dynamic knowledge graphs. The hidden static connections between entities in the dynamic knowledge graph were used to form static facts, assisting in the inference of the dynamic knowledge graph. Historical facts were employed to construct a historical vocabulary, and the historical vocabulary was queried when predicting the future. Facts that had not occurred in history were punished, and the probability of predicting duplicate historical facts was increased. Experiments were conducted on two public datasets for dynamic knowledge graph reasoning. Comparative experiments were performed using five mainstream models as baselines. In entity prediction experiments, the mean reciprocal rank (MRR) was 0.489 1 and 0.530 3, and Hits@10 reached 0.588 7 and 0.616 5 respectively, demonstrating the effectiveness of the proposed method.



Key wordsdynamic knowledge graph      static facts      repeating historical facts      history punishment      entity prediction     
Received: 17 October 2022      Published: 18 October 2023
CLC:  TP 391  
Fund:  国家自然科学基金资助项目(62073294);浙江省自然科学基金资助项目(LZ21F030003)
Corresponding Authors: Yong-qiang LI     E-mail: 332864925@qq.com;yqli@zjut.edu.cn
Cite this article:

Dong LIN,Yong-qiang LI,Xiang QIU,Yuan-jing FENG,Bi-feng XIE. Dynamic knowledge graph inference method combining static facts and repeated historical facts. Journal of ZheJiang University (Engineering Science), 2023, 57(10): 1915-1922.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.10.001     OR     https://www.zjujournals.com/eng/Y2023/V57/I10/1915


结合静态事实和重复历史事实的动态知识图谱推理方法

针对现有的动态知识图谱推理方法容易忽略动态知识图谱中存在着大量静态信息和重复历史事实的问题,提出结合静态事实和重复历史事实的动态知识图谱网络方法. 该方法利用动态知识图谱中实体间隐藏的静态联系来构成静态事实,并协助动态知识图谱推理;利用历史事实构建历史词表,在预测未来时对历史词表进行查询;对历史中未发生的事实进行惩罚,提高重复历史事实的预测概率. 在2个公开的数据集上进行动态知识图谱推理实验,对比实验时选用目前主流的5个模型作为基线. 在实体预测实验中,平均倒数排名(MRR)达到0.489 1和0.530 3,Hits@10达到0.588 7和0.616 5,证明了所提方法的有效性.


关键词: 动态知识图谱,  静态事实,  重复历史事实,  历史惩罚,  实体预测 
Fig.1 Framework of Sta-HisNet
Fig.2 Partial static knowledge graph of ICEWS18 data set
Fig.3 Historical pattern flow chart for Sta-HisNet
数据集 实体数 关系数 训练集数 验证集数 测试集数
ICEWS18 23 033 256 373 018 45 995 69 514
GDELT 7 691 240 1734 399 238 765 305 241
Tab.1 Statistical information on number of publicly available datasets by different knowledge graphs
模型 MRR Hits@1 Hits@3 Hits@10
ConvE 0.366 7 0.285 1 0.398 0 0.506 9
RE-NET 0.429 3 0.361 9 0.454 7 0.558 0
RE-GCN 0.463 1 0.391 2 0.497 3 0.569 3
CyGNET 0.466 9 0.405 8 0.498 2 0.571 4
CEN 0.472 6 0.418 6 0.506 1 0.579 1
Sta-HisNet 0.489 1 0.429 4 0.515 3 0.588 7
Tab.2 Entity prediction results of different models on ICEWS18 dataset
模型 MRR Hits@1 Hits@3 Hits@10
ConvE 0.359 9 0.270 5 0.393 2 0.494 4
RE-NET 0.401 2 0.324 3 0.434 0 0.538 0
RE-GCN 0.481 4 0.421 6 0.523 7 0.583 5
CyGNET 0.509 2 0.445 3 0.546 9 0.609 9
CEN 0.516 8 0.457 6 0.549 7 0.612 3
Sta-HisNet 0.530 5 0.475 5 0.560 1 0.616 5
Tab.3 Entity prediction results of different models on GDELT dataset
模型 MRR Hits@1 Hits@3 Hits@10
Sta-HisNet-NON-EMB 0.479 4 0.421 2 0.506 3 0.573 5
Sta-HisNet-NON-STA 0.482 2 0.494 5 0.509 8 0.578 1
Sta-HisNet-NON-CONV 0.473 1 0.411 3 0.503 2 0.571 3
Sta-HisNet-NON-LSTM 0.463 9 0.402 1 0.498 6 0.574 2
Sta-HisNet-NON-PUN 0.458 9 0.396 5 0.483 8 0.559 2
Sta-HisNet 0.489 1 0.429 4 0.515 3 0.588 7
Tab.4 Ablation experiment results of different modules on ICEWS18 dataset
模型 MRR Hits@1 Hits@3 Hits@10
Sta-HisNet-NON-EMB 0.526 3 0.471 0 0.555 2 0.611 2
Sta-HisNet-NON-STA 0.518 6 0.463 6 0.546 9 0.603 9
Sta-HisNet-NON-CONV 0.523 2 0.469 1 0.556 6 0.610 5
Sta-HisNet-NON-LSTM 0.514 5 0.459 8 0.546 3 0.601 2
Sta-HisNet-NON-PUN 0.509 2 0.445 3 0.536 9 0.589 9
Sta-HisNet 0.530 5 0.475 5 0.560 1 0.616 5
Tab.5 Ablation experiment results of different modules on GDELT dataset
Fig.4 Comparison of optimal number of rounds between two methods on two datasets
Fig.5 Time required for three methods to run one round on two datasets
[1]   LIU Z, XIONG C, SUN M, et al. Entity-duet neural ranking: Understanding the role of knowledge graph semantics in neural information retrieval [C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Columbus: ACL, 2008: 2395-2405.
[2]   JIANG T, LIU T, GE T, et al. Encoding temporal information for time-aware link prediction [C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing. Austin: ACL, 2016: 2350-2354.
[3]   BORDES A, USUNIER N, GARCIADURAN A, et al. Translating embeddings for modeling multi-relational data [C]// Proceedings of the Neural Information Processing Systems. Lake Tahoe: NIP, 2013: 2787-2795.
[4]   WANG Z, ZHANG J, FENG J, et al. Knowledge graph embedding by translating on hyperplanes [C]// Proceedings of the AAAI Conference on Artificial Intelligence. Quebec: AAAI, 2014, 28(1): 1112-1119.
[5]   DAI S, LIANG Y, LIU S, et al. Learning entity and relation embeddings with entity description for knowledge graph completion [C]// Proceedings of the 4th International Conference on Artificial Intelligence Technologies and Applications. Chengdu: JPCS, 2018: 202-205.
[6]   TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction [C]// Proceedings of the International Conference on Machine Learning. Hong Kong: ACM, 2016: 2071-2080.
[7]   SOCHER R, CHEN D, MANNING C D, et al. Reasoning with neural tensor networks for knowledge base completion [C]// Proceedings of the Neural Information Processing Systems. Lake Tahoe: NIP, 2013: 926-934.
[8]   SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks [C]// Proceedings of the European Semantic Web Conference. Heraklion: ESWC, 2018: 593-607.
[9]   KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. [2022-09-01]. https://arxiv.org/abs/1609.02907.
[10]   LEBLAY J, CHEKOL M W. Deriving validity time in knowledge graph [C]// Proceedings of the 27th Internation Conference on World Wide Web. Lyons: ACM, 2018: 1771-1776.
[11]   DASGUPTA S S, RAY S N, TALUKDAR P. Hyte: hyperplane-based temporally aware knowledge graph embedding [C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing. Brussels: ACL, 2018: 2001-2011.
[12]   TRIVEDI R, DAI H, WANG Y, et al. Know-evolve: Deep temporal reasoning for dynamic knowledge graphs [C]// Proceedings of the 34th International Conference on Machine Learning-Volume 70. Sydney: ACM, 2017: 3462-3471.
[13]   JIN W, ZHANG C, SZEKELY P, et al. Recurrent event network for reasoning over temporal knowledge graphs [C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing. Hong Kong: ACL, 2019: 8352-8364.
[14]   LI Z, GUAN S, JIN X, et al. Complex evolutional pattern learning for temporal knowledge graph reasoning [C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Dublin: ACL, 2022: 290-296.
[15]   LI Z X, JIN X L, LI W, et al. Temporal knowledge graph reasoning based on evolutional representation learning [C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. Montréal: ACM, 2021: 408-417.
[16]   ZHU C, CHEN M, FAN C, et al. Learning from History: modeling temporal knowledge graphs with sequential copy-generation networks [EB/OL]. [2022-09-01]. https://arxiv.org/abs/2012.08492.
[17]   WARD M D, BEGER A, CUTLER J, et al. Comparing GDELT and ICEWS event data [C]// Proceedings of the ISA Annual Convention. San Francisco: ISA, 2013: 1-49.
[18]   DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2d knowledge graph embeddings [C]// Proceedings of the 32th AAAI Conference on Artificial Intelligence. New Orleans: AAAI, 2018: 1811-1818.
[19]   HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[1] Hai-feng LI,Xue-ying ZHANG,Shu-fei DUAN,Hai-rong JIA,Hui-zhi LIANG. Fusing generative adversarial network and temporal convolutional network for Mandarin emotion recognition[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1865-1875.
[2] Lan WU,Quan-long CUI. Heterogeneous domain adaptation based on pseudo label refinement and semantic alignment[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1876-1884.
[3] Zhao-yang SONG,Xiao-qiang ZHAO,Yong-yong HUI,Hong-mei JIANG. Image super-resolution reconstruction algorithm based on multi-level continuous encoding and decoding[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1885-1893.
[4] Wei-long HE,Ping WANG,Ai-hua ZHANG,Ting-ting LIANG,Qiang-jie MA. On-line quantitative detection of welding arc shape based on object detection[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1903-1914.
[5] Xin JIN,Jian-jun ZHUANG,Zi-heng XU. Lightweight YOLOv5s network-based algorithm for identifying hazardous objects under vehicles[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1516-1526.
[6] Hui-xin WANG,Xiang-rong TONG. Research progress of recommendation system based on knowledge graph[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1527-1540.
[7] Qiang ZHANG,Kun-peng DU,Hui LI,Zong-fa LIN,Qing WANG. Aircraft assembly data integration based on virtual central data source[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1667-1679.
[8] Hao-ran GUO,Ji-chang GUO,Yu-dong WANG. Lightweight semantic segmentation network for underwater image[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1278-1286.
[9] Hao-jie FANG,Hong-zhao DONG,Shao-xuan LIN,Jian-yu LUO,Yong FANG. Driver fatigue state detection method based on multi-feature fusion[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1287-1296.
[10] Xiao-yan LI,Peng WANG,Jia GUO,Xue LI,Meng-yu SUN. Multi branch Siamese network target tracking based on double attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1307-1316.
[11] Zhe YANG,Hong-wei GE,Ting LI. Framework of feature fusion and distribution with mixture of experts for parallel recommendation algorithm[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1317-1325.
[12] Yun-hong LI,Jiao-jiao DUAN,Xue-ping SU,Lei-tao ZHANG,Hui-kang YU,Xing-rui LIU. Calligraphy generation algorithm based on improved generative adversarial network[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1326-1334.
[13] Wei QUAN,Yong-qing CAI,Chao WANG,Jia SONG,Hong-kai SUN,Lin-xuan LI. VR sickness estimation model based on 3D-ResNet two-stream network[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1345-1353.
[14] Wen-jie JIAO,Shuai-xu JI,Hui-min HAO,Jia-hai HUANG,Li-na LI,Shi-yu LI. New method and application of inverse kinematic solution for spherical wrist rehabilitation mechanism[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1365-1373.
[15] Jun HAN,Xiao-ping YUAN,Zhun WANG,Ye CHEN. UAV dense small target detection algorithm based on YOLOv5s[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1224-1233.