|
|
On-line quantitative detection of welding arc shape based on object detection |
Wei-long HE1( ),Ping WANG1,2,*( ),Ai-hua ZHANG1,2,Ting-ting LIANG1,Qiang-jie MA1 |
1. College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China 2. Key Laboratory of Gansu Advanced Control for Industrial Processes, Lanzhou 730050, China |
|
|
Abstract A lightweight object detection network YOLO-SEC based on YOLOv5s was proposed to resolve the problem that the arc shape in ultra-narrow gap welding process was difficult to detect online and describe quantitatively. Three lightweight convolutional modules, namely AD-Shufflenet, LC3 and Conv-Maxpool, were designed and applied to the backbone network and neck network of baseline network. Single detection layer inference structure was used in the detection head network, so that the network complexity was effectively reduced. The k-means+ algorithm was designed to cluster labeled anchor frames in the data set and obtain the preset anchor frame size required for network training, and the EIoU positioning loss function was introduced to improve the accuracy of the network. The monocular linear camera calibration algorithm was introduced into the prediction frame drawing function, so that the pixel length could be converted into the actual length by calibration before welding, and the quantitative description of arc size was realized. Experimental results showed that the detection accuracy of YOLO-SEC was 99.2%, the measurement error was less than 0.5%, the reasoning speed was 3.1 ms, and the network volume was 0.6 MB. All the above indexes were better than the YOLOv5s network and the same type of lightweight network.
|
Received: 10 September 2022
Published: 16 October 2023
|
|
Fund: 国家自然科学基金资助项目(61866021,62001198,62173170);流程工业综合自动化国家重点实验室联合开放基金资助项目(2021-KF-21-04);甘肃省青年科技基金资助项目(20JR10RA186) |
Corresponding Authors:
Ping WANG
E-mail: heweilongd@163.com;pingwangsky@163.com
|
基于目标检测的焊接电弧形态在线定量检测
超窄间隙焊接过程中电弧形态难以在线监测和定量描述,为此提出基于YOLOv5s的轻量化目标检测网络YOLO-SEC. 设计3种轻量化卷积模块AD-Shufflenet、LC3和Conv-Maxpool,应用于基线网络的骨干网络和颈网络;在检测头网络中使用单检测层推理结构,有效降低网络复杂度. 设计并使用k-means+算法聚类数据集的已标注锚框,得到网络训练所需的预设锚框尺寸. 引入EIoU定位损失函数,提升网络的准确率. 将单目线性相机标定算法引入预测框绘制函数,在焊接前通过标定将像素长度转化为实际长度,实现电弧尺寸的定量描述. 实验结果表明,YOLO-SEC的检测精度达到99.2%、测量误差小于0.5%、推理速度为3.1 ms、网络体积为0.6 MB,以上指标均优于YOLOv5s网络和同类型轻量化网络.
关键词:
超窄间隙焊接,
电弧形态,
目标检测,
相机标定,
轻量化
|
|
[1] |
朱志明, 程世佳, 符平坡, 等 焊接电弧行为特征和稳定性评价研究与进展[J]. 焊接, 2018, (11): 1- 6 ZHU Zhi-ming, CHENG Shi-jia, FU Ping-po, et al Research and progress on behavior characteristics and stability evaluation of welding arc[J]. Welding and Joining, 2018, (11): 1- 6
|
|
|
[2] |
MIAO J, LI Y, DONG Z, et al Research progress of low spatter CO2 welding technology [J]. The International Journal of Advanced Manufacturing Technology, 2022, 123: 3715- 3736
doi: 10.1007/s00170-022-10504-9
|
|
|
[3] |
陈欢, 朱亮, 姚仁, 等 超窄间隙焊接中送进式焊剂带约束电弧的加热特性[J]. 电焊机, 2021, 51 (9): 41- 45 CHEN Huan, ZHU Liang, YAO Ren, et al Heating characteristics of continuous feeding flux strips constrained arc in ultra-narrow gap welding[J]. Electric Welding Machine, 2021, 51 (9): 41- 45
|
|
|
[4] |
朱亮, 张旭磊, 郑韶先, 等 焊剂带约束电弧超窄间隙焊接的实现[J]. 兰州理工大学学报, 2007, 33 (3): 27- 30 ZHU Liang, ZHANG Xu-lei, ZHENG Shao-xian, et al Realization of ultra-narrow gap welding with flux strips constraining arc[J]. Journal of Lanzhou University of Technology, 2007, 33 (3): 27- 30
|
|
|
[5] |
龚练, 朱亮, 张爱华 超窄间隙焊接中焊剂片与电弧相 互作用机制分析[J]. 焊接学报, 2017, 38 (12): 57- 60 GONG Lian, ZHU Liang, ZHANG Ai-hua, et al Interaction mechanism of flux band and arc in ultra-narrow gap welding[J]. Transactions of the China Welding Institution, 2017, 38 (12): 57- 60
|
|
|
[6] |
任乐, 张爱华, 常东东 基于电弧声的超窄间隙焊接熔合状态识别[J]. 电焊机, 2021, 51 (7): 11- 16 REN Le, ZHANG Ai-hua, CHANG Dong-dong, et al Fusion state recognition of ultra-narrow gap welding based on arc sound[J]. Electric Welding Machine, 2021, 51 (7): 11- 16
|
|
|
[7] |
YE D, HUA X, ZHANG J, et al Analysis of arc interference and welding stability in twin wire GMA welding[J]. The International Journal of Advanced Manufacturing Technology, 2015, 81: 627- 633
doi: 10.1007/s00170-015-7225-9
|
|
|
[8] |
ZHU Y, WANG Z, LIU R, et al Study on arc behavior and droplet transfer in twin-electrode TIG-MIG indirect arc welding[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120: 6821- 6831
doi: 10.1007/s00170-022-09131-1
|
|
|
[9] |
LI W, JI Y, WU J, et al A modified welding image feature extraction algorithm for rotating arc narrow gap MAG welding[J]. Industrial Robot, 2015, 42 (3): 222- 227
doi: 10.1108/IR-11-2014-0407
|
|
|
[10] |
王聪, 马国红, 姜芙蓉, 等 基于数字形态学的DE-GMAW电弧图像处理[J]. 热加工工艺, 2012, 41 (19): 145- 147 WANG Cong, MA Guo-hong, JIANG Fu-rong, et al DE-GMAW arc image processing based on mathematical morphology[J]. Hot Working Technology, 2012, 41 (19): 145- 147
|
|
|
[11] |
JAMROZIK W, GÓRKA J Assessing MMA welding process stability using machine vision-based arc features tracking system[J]. Sensors, 2021, 21 (1): 84
|
|
|
[12] |
程世佳, 朱志明, 符平坡 基于电弧图像的脉冲TIG焊电弧形态及特征温度演变规律[J]. 清华大学学报: 自然科学版, 2021, 61 (9): 994- 1001 CHENG Shi-jia, ZHU Zhi-ming, FU Ping-po Arc shape variations and characteristic temperatures of pulsed TIG welding arcs based on observed arc images[J]. Journal of Tsinghua University: Science and Technology, 2021, 61 (9): 994- 1001
|
|
|
[13] |
ZHU C, TANG X, HE Y, et al Study on arc characteristics and their influences on weld bead geometry in narrow gap GMAW of 5083 Al-alloy[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90: 2513- 2525
doi: 10.1007/s00170-016-9563-7
|
|
|
[14] |
REN S, HE K, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149
doi: 10.1109/TPAMI.2016.2577031
|
|
|
[15] |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector [C]// Proceedings of European Conference on Computer Vision. Amsterdam: Springer, 2016: 21–37.
|
|
|
[16] |
REDMON J, DIVVAL S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779–788.
|
|
|
[17] |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger [C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6517–6525.
|
|
|
[18] |
REDMON J, FARHADI A. YOLOv3: an incremental improvement [EB/OL]. (2018-01-20)[2022-08-12]. https://arxiv.org/pdf/1804.02767v1.pdf.
|
|
|
[19] |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: optimal speed and accuracy of object detection [EB/OL]. (2020-04-23) [2022-08-12] https://arxiv.org/pdf/2004.10934.pdf.
|
|
|
[20] |
郝琨, 王阔, 王贝贝 基于改进Mobilenet-YOLOv3的轻量级水下生物检测算法[J]. 浙江大学学报: 工学版, 2022, 56 (8): 1622- 1632 HAO Kun, WANG Kuo, WANG Bei-bei Lightweight underwater biological detection algorithm based on improved Mobilenet-YOLOv3[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (8): 1622- 1632
|
|
|
[21] |
董红召, 方浩杰, 张楠 旋转框定位的多尺度再生物品目标检测算法[J]. 浙江大学学报: 工学版, 2022, 56 (1): 16- 25 DONG Hong-zhao, FANG Hao-jie, ZHANG Nan Multi-scale object detection algorithm for recycled objects based on rotating block positioning[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (1): 16- 25
|
|
|
[22] |
ZHANG Y F, REN W, ZHANG Z, et al Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146- 157
doi: 10.1016/j.neucom.2022.07.042
|
|
|
[23] |
LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8759-8768.
|
|
|
[24] |
WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle: IEEE, 2020: 390-391.
|
|
|
[25] |
MA N, ZHANG X, ZHENG H T, et al. Shufflenet V2: practical guidelines for efficient CNN architecture design [C]// Proceedings of the European Conference on Computer Vision. [S.l.]: Springer, 2018: 122-138.
|
|
|
[26] |
ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression [C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2020, 34(7): 12993-13000.
|
|
|
[27] |
尹英杰, 徐德, 张正涛 等 基于单目视觉的平面测量[J]. 电子测量与仪器学报, 2013, 27 (4): 347- 352 YIN Ying-jie, XU De, ZHANG Zheng-tao, et al Plane measurement based on monocular vision[J]. Journal of Electronic Measurement and Instrument, 2013, 27 (4): 347- 352
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|