Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (8): 1667-1679    DOI: 10.3785/j.issn.1008-973X.2023.08.019
    
Aircraft assembly data integration based on virtual central data source
Qiang ZHANG1(),Kun-peng DU2,Hui LI2,Zong-fa LIN1,Qing WANG1,*()
1. Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
2. Xi’an Aircraft Industrial (Group) Co. Ltd, Xi’an 710089, China
Download: HTML     PDF(2196KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An aircraft assembly data integration method based on a virtual central data source was proposed to solve the problem of multi-source heterogeneity in aircraft assembly data, promote data sharing and maximize utilization. The accessibility of data was improved by constructing a virtual central data source on top of the local data sources. The aircraft assembly data were divided into three classes, which were assembly object data, assembly system data, and assembly task data. A global system data model with five layers was proposed to establish a global uniform index rule, which can support data requesters to express data requirements without ambiguity and avoid the problem of semantic heterogeneity. The method was implemented by a software called assembly data integration middleware, which was used to integrate data in the assembly of the outer wing box. The application verification and test of the middleware were carried out. Results show that the data integration middleware can achieve the integration of multi-source heterogeneous aircraft assembly data and improve the accessibility of multi-source heterogeneous data with high concurrency performance.



Key wordsaircraft assembly      flexible assembly      multi-source heterogeneity      data integration      middleware     
Received: 15 October 2022      Published: 31 August 2023
CLC:  TP 391  
Fund:  国家重点研发计划资助项目(2019YFB1707501);基础科研计划资助项目(JCKY2021205B110);自然科学基金资助项目(51975520)
Corresponding Authors: Qing WANG     E-mail: 11825016@zju.edu.cn;wqing@zju.edu.cn
Cite this article:

Qiang ZHANG,Kun-peng DU,Hui LI,Zong-fa LIN,Qing WANG. Aircraft assembly data integration based on virtual central data source. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1667-1679.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.08.019     OR     https://www.zjujournals.com/eng/Y2023/V57/I8/1667


基于虚拟中心数据源的飞机装配数据集成

为了解决飞机装配数据中存在的多源异构问题,促进数据共享和充分利用,提出基于虚拟中心数据源的飞机装配数据集成方法. 通过在所有局部数据源之上构建一个虚拟中心数据源,解决飞机装配数据的多源异构问题并改善数据的可访问性. 将飞机装配数据分为装配对象数据、装配系统数据和装配任务数据3类. 提出5层支全局系统数据模型,建立全局统一的索引规则,持数据请求者无歧义地表达数据需求,避免出现语义异构问题. 对提出的数据集成方法进行软件实现,构建了装配数据集成中间件,并利用该中间件实现外翼翼盒装配的数据集成. 进行中间件的应用验证与测试,结果表明数据集成中间件能够以毫秒级额外数据访问时间为代价,实现多源异构飞机装配数据的集成,改善多源异构数据的可访问性,具有较高的并发性能.


关键词: 飞机装配,  柔性化装配,  多源异构,  数据集成,  中间件 
Fig.1 Related assembly data of an aircraft outer wing box
Fig.2 Hierarchical logic for building a global model of assembly data
Fig.3 Global model of assembly data
Fig.4 Data encapsulation method of basic data unit
Fig.5 Comparison of data request methods before and after data integration
Fig.6 Architecture of data integration middleware
Fig.7 Access to assembly data through data integration middleware
Fig.8 Overview screen of device running status
Fig.9 Screen for viewing device details
事件 对应时间内涵
Socket Initialization Socket初始化所花费的时间
DNS Lookup DNS域名解析所花费的时间
TCP Handshake TCP的3次握手所花费的时间
Transfer Start 从发送请求到接收响应内容的第1个字节
所花费的时间
(服务器处理所花费的时间包含在Transfer Start之内)
Download 接收全部响应内容所花费的时间
Tab.1 Events defined and their connotations in Postman
Fig.10 Time-consuming summary of data integration middleware time
装配场景 t1/ms t2/ms
非柔性化装配 11. 46 455. 07
柔性化装配 23. 61 467. 22
Tab.2 Summary of cost of additional data access time
[1]   梅中义, 黄超, 范玉青 飞机数字化装配技术发展与展望[J]. 航空制造技术, 2015, 18: 32- 37
MEI Zhong-yi, HUANG Chao, FAN Yu-qing Development and prospect of the aircraft digital assembly technology[J]. Aeronautical Manufacturing Technology, 2015, 18: 32- 37
doi: 10.16080/j.issn1671-833x.2015.18.032
[2]   王峻峰, 刘锐, 谢敏, 等 现场实时数据驱动的翼身制孔过程三维可视化监视研究[J]. 航空制造技术, 2018, 61 (1): 36- 41
WANG Jun-feng, LIU Rui, XIE Min, et al Research on onsite real time data driven 3D visualization monitoring of aircraft wing-body drilling process[J]. Aeronautical Manufacturing Technology, 2018, 61 (1): 36- 41
doi: 10.16080/j.issn1671-833x.2018.01/02.036
[3]   SINGARAVEL B Analysis of hole quality errors in drilling of GFRP composite[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1057 (1): 012069- 012076
doi: 10.1088/1757-899X/1057/1/012069
[4]   TANG K, WANG X, HU W, et al. Research on tool wear prediction based on deep residual network[C]// Proceedings of the 2018 3rd International Workshop on Materials Engineering and Computer Sciences. Dordrecht: ATLANTIS PRESS, 2018: 314-318.
[5]   吴信东, 董丙冰, 堵新政, 等 数据治理技术[J]. 软件学报, 2019, 30 (9): 2830- 2856
WU Xin-dong, DONG Bing-bing, DU Xin-zheng, et al Data governance technology[J]. Journal of Software, 2019, 30 (9): 2830- 2856
doi: 10.13328/j.cnki.jos.005854
[6]   窦亚冬, 王青, 李江雄, 等 飞机数字化装配系统数据集成技术[J]. 浙江大学学报: 工学版, 2015, 49 (5): 858- 865
DOU Ya-dong, WANG Qing, LI Jiang-xiong, et al Data integration for aircraft digital assembly system[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (5): 858- 865
[7]   应征, 王青, 李江雄, 等 飞机数字化装配系统运动数据集成及监控技术[J]. 浙江大学学报: 工学版, 2013, 47 (5): 761- 781
YING Zheng, WANG Qing, LI Jiang-xiong, et al Motion data integration and monitoring of digital assembly system of aircraft[J]. Journal of Zhejiang University: Engineering Science, 2013, 47 (5): 761- 781
[8]   SCOTT M, DAVID S, SALERNO R, et al. 747 data management system development and implementation [EB/OL]. [2017-06-13]. http://www. kinematics. com/media/publications/DMS-2. pdf.
[9]   孟飙, 周飞, 王旭东, 等 面向飞机装配质量数据深度分析方法研究[J]. 科学技术与工程, 2015, 15 (34): 235- 241
MENG Biao, ZHOU Fei, WANG Xu-dong, et al Research on depth analysis method of aircraft assembly quality data[J]. Science Technology and Engineering, 2015, 15 (34): 235- 241
doi: 10.3969/j.issn.1671-1815.2015.34.042
[10]   亢颖, 王仲奇, 康永刚, 等 飞机数字化装配数据集成 管理研究[J]. 航空制造技术, 2014, 50 (16): 17- 22
KANG Ying, WANG Zhong-qi, KANG Yong-gang, et al Data integration management of digital assembly for aircraft[J]. Aircraft Manufacturing Technology, 2014, 50 (16): 17- 22
doi: 10.3969/j.issn.1671-833X.2014.16.003
[11]   卞华星, 陈丹, 庄毅 DDS在飞机协同设计系统中的应用[J]. 计算机与现代化, 2015, 237 (5): 35- 39
BIAN Hua-xing, CHEN Dan, ZHUANG Yi Application of DDS in aircraft collaborative design system[J]. Computer and Modernization, 2015, 237 (5): 35- 39
doi: 10.3969/j.issn.1006-2475.2015.05.008
[12]   WANG Y, LI Q, SUN Y, et al. Aviation equipment fault information fusion based on ontology [C]// Proceedings of 2014 International Conference on Computer, Communications and Information Technology (CCIT 2014). Dordrecht: ATLANTIS PRESS, 2014: 18-20.
[13]   IEEE. IEEE standard for learning object metadata: 1484.12.1—2002 [S]. Washington D.C.: IEEE, 2002.
[14]   梁在城, 段隆振, 冯豫华 传统E-R模型到面向对象数据模型转换的研究[J]. 计算机与现代化, 2006, (7): 18- 19,22
LIANG Zai-cheng, DUAN Long-zhen, FENG Yu-hua Research on transformation of traditional E-R model to object-oriented data model[J]. Computer and Modernization, 2006, (7): 18- 19,22
doi: 10.3969/j.issn.1006-2475.2006.07.007
[1] Yue XI,Wan-bin ZHANG,Pei-nan LI,Bao-lin LIU,Ben XU,Xiao-jun LI. Three-dimensional high-resolution evaluation of urban underground space resource quality[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 656-663, 710.
[2] Zhao XU,Lu ZHANG,Hua SUO,Ying-zi CHI. IFC-based data visualization of 3D Tiles for buildings[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1047-1056.
[3] ZHENG Shou-guo, CUI Yan-min, WANG Qing, YANG Fei, CHENG Liang. Design of field data acquisition platform for aircraft assembly[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(8): 1526-1534.
[4] WANG Qing, YU Xiao guang, Qiao Ming jie, ZHAO An an, CHENG Liang, LI Jiang xiong, KE Ying lin. Rapid calibration based on SQP algorithm for coordinate frame of localizers[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 319-327.
[5] WANG Ji-kui, LI Shao-bo. Quality evaluation algorithm for conflicting data sources based on true value finding[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(2): 303-318.
[6] WANG Qing, LIANG Qin, LI Jiang-xiong, KE Ying-lin. Estimation and alignment method of wing position and orientation for aircraft digital assembly[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(7): 1287-1294.
[7] YING Zheng, WANG Qing, LI Jiang-xiong, KE Ying-lin,SUN Wen-bo,HAN Yong-wei. Motion data integration and monitoring of digital assembly system of aircraft[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(5): 761-767.
[8] LIU Chu-hui, KE Ying-lin. Joint measuring and evaluating technology for final
assembly of aircraft wing and fuselage
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(2): 201-208.
[9] JIANG Jun-Xia, FAN Zi-Chun, GUO Zhi-Min, KE Yang-Lin. Design and optimization of flexible assembly platform used for
three sections joint
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(9): 1798-1804.
[10] GUO Xing-Meng, GUO Tian-Chen, ZHANG San-Yuan. Middleware framework based on management information ontology and request functional components[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(5): 844-848.