Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (6): 1047-1056    DOI: 10.3785/j.issn.1008-973X.2019.06.004
Civil and St ructural Engineering     
IFC-based data visualization of 3D Tiles for buildings
Zhao XU1(),Lu ZHANG1,Hua SUO2,Ying-zi CHI3
1. School of Civil Engineering, Southeast University, Nanjing 210000, China
2. School of Architecture & Urban Planning, Guangzhou University, Guangzhou 510000, China
3. Nanjing Tech University Pujiang Institute, Nanjing 210000, China
Download: HTML     PDF(1673KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In view of the shortcomings of the network transmission and browser rendering in current BIM and GIS integration schemes, 3D Tiles in the GIS domain was chosen as the research object considering that it is more suitable to be loaded on webpages; the method was proposed to convert IFC to 3D Tiles for BIM models and to load BIM data quickly on Web; meanwhile, the integrated solution was analyzed to show BIM-GIS data massively on Web. The IFC data was taken as the starting point and splits BIM data according to the building component categories, and the geometry information and the semantic attributes were obtained. The geometry information file was converted by the intermediate format and finally encapsulated with the semantic attribute file to form 3D Tiles data with BIM semantic attributes. The coordinate conversion, data mapping, spatial index and levels of detail (LOD) hierarchical division are completed during the conversion process to ensure fast and efficient rendering interaction of BIM data and geographical feature data in the 3D WebGIS framework.



Key wordsindustry foundation class (IFC)      3D Tiles      3D WebGIS      building information modeling (BIM)      building      data integration     
Received: 11 December 2018      Published: 22 May 2019
CLC:  TU 205  
Cite this article:

Zhao XU,Lu ZHANG,Hua SUO,Ying-zi CHI. IFC-based data visualization of 3D Tiles for buildings. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1047-1056.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.06.004     OR     http://www.zjujournals.com/eng/Y2019/V53/I6/1047


基于工业基础类的建筑物3D Tiles数据可视化

针对目前建筑信息模型(BIM)与地理信息系统(GIS)集成方案网络传输与浏览器渲染能力的不足,选择GIS领域更适合Web端加载的三维瓦片数据作为研究目标,提出BIM模型从工业基础类(IFC)向3D Tiles数据格式的转化方法和在Web端快速加载BIM模型的思路,并对GIS和BIM在Web端的大体量数据集成方案进行研究. 针对IFC标准模型数据,根据建筑构件划分标准对数据进行拆分,得到几何信息文件和语义属性文件. 几何信息文件经中间格式转换,最终与语义属性文件封装为保留有BIM语义属性的三维瓦片数据. 在转换过程中完成了坐标转换、数据映射、空间索引以及多细节层级(LOD)划分,实现了BIM数据和地理要素数据在三维WebGIS框架下快速、高效的渲染交互.


关键词: 工业基础类(IFC),  三维瓦片,  三维WebGIS,  建筑信息模型(BIM),  建筑物,  数据集成 
Fig.1 Research methodology of data visualization of 3D Tiles based on industry foundation class(IFC)
Fig.2 Conversion process map of IFC to 3D Tiles
Fig.3 Leveled structure of glTF data
Fig.4 File hear and body structure of tile data b3dm
Fig.5 Correspondence between tile unit data and 3D tiles structure
Fig.6 Split global model to IFC and JSON property files
Fig.7 Mapping process of element attribute data to model
Fig.8 Tile-based spatial index structure of quadtree,k-d tree,octree and grid
Fig.9 Perspective frustum in model rendering process
Fig.10 Side view of frustum in model rendering process
Fig.11 Frustum culling in model rendering process
Fig.12 Backface culling in model rendering process
Fig.13 Retrieve tile nodes with scene dispatch algorithm
Fig.14 Frame rate(non-culled)in model rendering process
Fig.15 Frame rate(culling)in model rendering process
类别 类型 类型标记 数量
中悬窗 900×900 C1527 108
凸窗-四扇-斜切 2 600×2 400 C1519 72
凸窗-三扇推拉-斜切 3 000×2 400 C1517 36
推拉窗 1 200×2 100 C1521 144
推拉窗1 1 800×2 100 C1520 90
欧式窗套窗1 1 800×2 100 C1530 32
转角凸窗-双层两列-斜切 1 200×2 400 C1523 36
Tab.1 List of window components for experimental model
LOD层级 LOD1 LOD2 LOD3 LOD4
IFC类型 IfcSite IfcBuilding
IfcBuildingStorey
IfcWall IfcBeam
IfcWindow IfcSlabIfcColumn
IfcRoof
IfcDoor IfcStair
渲染类型 包围盒
加载情况
Tab.2 Loading situation of LOD hierarchy models
Fig.16 3D earth scene in Cesium frame
Fig.17 Close and distant views of experimental model in Cesium
Fig.18 Elements and attributes scene of experimental model in Cesium
[1]   KIM K, KIM H, KIM W, et al Integration of ifc objects and facility management work information using Semantic Web[J]. Automation in Construction, 2018, 87: 173- 187
doi: 10.1016/j.autcon.2017.12.019
[2]   KANG T W, HONG C H A study on software architecture for effective BIM/GIS-based facility management data integration[J]. Automation in Construction, 2015, 54: 25- 38
doi: 10.1016/j.autcon.2015.03.019
[3]   AMIREBRAHIMI S, RAJABIFARD A, MENDIS P, NGO T A BIM-GIS integration method in support of the assessment and 3D visualization of flood damage to a building[J]. Journal of Spatial Science, 2016, 61 (2): 317- 350
doi: 10.1080/14498596.2016.1189365
[4]   ZHU J X, WANG X Y, WANG P, et al Integration of BIM and GIS: geometry from IFC to shapefile using open-source technology[J]. Automation in Construction, 2019, 102: 105- 119
doi: 10.1016/j.autcon.2019.02.014
[5]   李德超, 张瑞芝 BIM技术在数字城市三维建模中的应用研究[J]. 土木建筑工程信息技术, 2012, 4 (1): 47- 51
LI De-chao, ZHANG Rui-zhi Research on applying BIM to build three-dimensional model of digital city[J]. Journal of Information Technology in Civil Engineering and Architecture, 2012, 4 (1): 47- 51
doi: 10.3969/j.issn.1674-7461.2012.01.009
[6]   汤圣君, 朱庆, 赵君峤 BIM与GIS数据集成: IFC与CityGML建筑几何语义信息互操作技术[J]. 土木建筑工程信息技术, 2014, 6 (4): 11- 17
TANG Sheng-jun, ZHU Qing, ZHAO Jun-qiao Towards interoperating of BIM and GIS model: geometric and semantic integration of CityGML and IFC building models[J]. Journal of Information Technology in Civil Engineering and Architecture, 2014, 6 (4): 11- 17
doi: 10.3969/j.issn.1674-7461.2014.04.002
[7]   LIU D W, PENG J. WANG Y Y, et al Implementation of interactive three-dimensional visualization of air pollutants using WebGL[J]. Environmental Modelling and Software, 2019, 114: 188- 194
[8]   王珩玮, 胡振中, 林佳瑞, 等 面向Web的BIM三维浏览与信息管理[J]. 土木建筑工程信息技术, 2013, 5 (3): 1- 7
WANG Heng-wei, HU Zhen-zhong, LIN Jia-rui, et al Web-oriented BIM 3D viewing and information management[J]. Journal of Information Technology in Civil Engineering and Architecture, 2013, 5 (3): 1- 7
doi: 10.3969/j.issn.1674-7461.2013.03.001
[9]   乐世华, 张煦, 张尚弘, 等 基于Cesium的WebGIS流域虚拟场景搭建[J]. 水利水电技术, 2018, 49 (5): 90- 96
LE Shi-hua, ZHANG Xu, ZHANG Shang-hong, et al Cesium-based construction of WebGIS watershed virtual scene[J]. Water Resources and Hydropower Engineering, 2018, 49 (5): 90- 96
[10]   高喆, 王佳, 周小平, 等 跨平台的建筑信息模型展示技术研究[J]. 建筑技术, 2017, 48 (4): 405- 407
GAO Zhe, WANG Jia, ZHOU Xiao-ping, et al Research on cross platform model display technology of BIM[J]. Architecture Technology, 2017, 48 (4): 405- 407
doi: 10.3969/j.issn.1000-4726.2017.04.019
[11]   黄桦, 王良清, 俞志强 面向流媒体传输的异构三维建筑模型转换方法及应用[J]. 测绘与空间地理信息, 2018, 41 (12): 119- 121
HUANG Hua, WANG Liang-qing, YU Zhi-qiang Transformation method and application of heterogeneous 3D building model for streaming media transmission[J]. Geomatics and Spatial Information Technology, 2018, 41 (12): 119- 121
[12]   KULAWIAK M, CHYBICKI A Application of Web-GIS and geovisual analytics to monitoring of seabed evolution in South Baltic Sea coastal areas[J]. Marine Geodesy, 2018, 41 (4): 405- 426
doi: 10.1080/01490419.2018.1469557
[13]   CHEN Y, SHOORAJ E, RAJABIFARD A, SABRI S From IFC to 3D Tiles: an integrated open-source solution for visualising BIMs on cesium[J]. ISPRS International Journal of Geo-Information, 2018, 7 (10): 393- 404
doi: 10.3390/ijgi7100393
[14]   DICK C, SCHNEIDER J, RUDIGER W Efficient geometry compression for GPU-based decoding in realtime terrain rendering[J]. Computer Graphics Forum, 2009, 28 (1): 67- 83
doi: 10.1111/cgf.2009.28.issue-1
[15]   HEATON J, PARLIKAD A K A conceptual framework for the alignment of infrastructure assets to citizen requirements within a Smart Cities framework[J]. Cities, 2019, 90: 32- 41
doi: 10.1016/j.cities.2019.01.041
[1] Xin-yue LI,Shu-qin CHEN,Hong-liang LI,Yun-xiao LOU,Jia-he LI. Analysis of air-conditioning usage and energy consumption in campus teaching buildings with data mining[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1677-1689.
[2] Shu-hao RAN,Yu-long HU,Yuan-wei YANG,Xian-jun GAO,Xi LI,Ming-zhu CHEN. Building extraction from high resolution remote sensing image based on samples morphological transformation[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 996-1006.
[3] Zhi-song WANG,Jun DENG,Zhi-yuan FANG,Yuan-yuan CHEN. Large eddy simulation of wind load on low-rise buildings subjected to downburst[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 512-520.
[4] Jiang LU,Deng-hui WANG,Kang ZHAO,Shi-yun LIU. Experimental performance of intermittent space heating with different terminals in a self-thermal insulation building[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2092-2099.
[5] Jin LIANG,Kun LUO,Qiang WANG,Xu-chao YANG,Jian-ren FAN,Jun-xi ZHANG. Effect of high-albedo roofs on urban heat island and air-conditioning energy consumption[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1993-2000.
[6] Xiao-tao ZHANG,Yu-shi LU,Kai-hua LU. Spreading characteristics of external smoke for buildings with internal corridor[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1986-1993.
[7] WANG Cheng-bing, SHAO Pu. Crossing construction methods of subway station under building[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 69-77.
[8] ZHANG Lu, HUANG Jian-kun, LIU Wen, SHEN Shi-jie, LI Ya-guang. Design and building method for fabricated light-wood frame structures by building information modeling[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(9): 1676-1685.
[9] LI Tian-xiang, TONG Gen-shu, ZHANG Lei. Curvature ductility-based seismic force reduction factor of flexure-type structure[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(7): 1310-1319.
[10] SHI Jun-peng, GONG Jing-hai, LI Zhong-li. Simulation technique for tension process in spoke structure based on building information modeling[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(1): 89-96.
[11] LI Ying-min, YANG Long, LIU Shuo-yu, LUO Wen-wen. Method of failure mode evaluation of structure based on seismic resilience index[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(11): 2197-2206.
[12] ZHENG Shun yi, WEI Hai tao, ZHAO Li ke, HUANG Rong yong. BIM-based method for calculating and managing wooden template required for housing construction[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(1): 17-26.
[13] LIU Hui, FENG Zhi quan, LIANG Li wei, XU Zhi peng. Natural interaction model and algorithm based on virtual interface[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(6): 1167-1175.
[14] ZHANG Run feng, LIANG Rong zhu, ZHANG Xian min, XUE Xin hua. Analysis on shield construction parameters during down crossing existing buildings[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(3): 545-550.
[15] HUANG Zi shuo, YU Hang, PENG Zhen wei, LIU Zhi yuan. Building total energy system model(BETS)for community energy planning[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(2): 292-298.