Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (4): 656-663, 710    DOI: 10.3785/j.issn.1008-973X.2022.04.004
    
Three-dimensional high-resolution evaluation of urban underground space resource quality
Yue XI1(),Wan-bin ZHANG2,Pei-nan LI3,*(),Bao-lin LIU2,Ben XU2,Xiao-jun LI1
1. College of Civil Engineering, Tongji University, Shanghai 200092, China
2. CREEC(Chongqing) Survey, Design and Research Limited Company, Chongqing 400023, China
3. College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
Download: HTML     PDF(1633KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A three-dimensional high-resolution urban underground space resource (UUSR) evaluation method was proposed in order to consider the three-dimensional (3D) utilization behavior of underground space. A chain run-length encoding data structure was established, and its mapping relationship with the voxel space was constructed. The compression storage and integration of multi-source evaluation data was realized. The key elements of the evaluation process were integrated, and a 3D high-resolution UUSR evaluation system was developed based on ArcGIS Engine. Yuzhong Peninsula in Chongqing was taken as an engineering application, and the 3D high-resolution UUSR evaluation was conducted on the whole area with a depth of 60 m. Construction risks of underground rail transit lines were analyzed. Results show that the underground space of Yuzhong Peninsula in Chongqing was finely divided and evaluated to obtain the 3D UUSR grade distribution of the evaluation area, and construction risks of underground rail transit lines were given in detail. The 3D high-resolution UUSR evaluation can be conducted by the proposed evaluation method, which provides decision-making support for underground space development.



Key wordsurban underground space      resource quality      three-dimensional evaluation      high-resolution      multi-source data integration     
Received: 24 May 2021      Published: 24 April 2022
CLC:  TU 91  
Fund:  国家自然科学基金高铁联合基金资助项目(U1934212).
Corresponding Authors: Pei-nan LI     E-mail: xiyue2088@tongji.edu.cn;lipeinan@dhu.edu.cn
Cite this article:

Yue XI,Wan-bin ZHANG,Pei-nan LI,Bao-lin LIU,Ben XU,Xiao-jun LI. Three-dimensional high-resolution evaluation of urban underground space resource quality. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 656-663, 710.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.04.004     OR     https://www.zjujournals.com/eng/Y2022/V56/I4/656


城市地下空间资源质量三维精细化评价

为了考虑地下空间的立体化利用行为,提出城市地下空间资源质量三维精细化评价方法. 通过建立链式游程编码数据结构,构建数据结构与体素空间的映射关系,实现多源评价数据的压缩存储与集成. 整合评价过程的各要素,基于ArcGIS Engine开发城市地下空间资源质量三维精细化评价系统. 以重庆市渝中半岛作为工程应用,开展该区域60 m深度内的地下空间资源质量三维精细化评价,分析该区域地下交通线路的建设风险. 结果表明,重庆市渝中半岛地下空间被精细地划分及评价,得到区域资源质量的立体分区,给出地下交通线路建设潜在风险的详细信息. 提出的评价方法实现了城市地下空间资源质量三维精细化评价,可为城市地下空间开发提供决策支持.


关键词: 城市地下空间,  资源质量,  三维评价,  精细化,  多源数据集成 
Fig.1 3D voxel coordinate system of evaluation area
Fig.2 Chain run-length encoding data structure
Fig.3 Information storage of evaluation index based on triple
Fig.4 Three-dimensional integration of multi-source data
Fig.5 Main interface and function of urban underground space resource system
Fig.6 Data flow of UUSR evaluation system
Fig.7 Evaluation area of Yuzhong Peninsula in Chongqing
风险因素 评价指标 评价属性 评价属性值
s0 = 0 s0 = ?3.3 s0 = ?6.6 s0 = ?10
穿越地下已有建(构)筑物或人防工程 地下既有建(构)筑物、人防工程 从上方穿越的距离 ≥0.5倍安全距离 ? ? < 0.5倍安全距离
从下方穿越的距离 ≥2倍安全距离 ? ? < 2倍安全距离
从侧方穿越的距离 ≥1倍安全距离 ? ? < 1倍安全距离
穿越重要保护建筑、古文物或遗迹 历史遗迹、重要保护建筑 评价体素埋深/m ≥10 9.0~10.0 8.0~9.0 < 8
Tab.1 Evaluation basis of control index
风险因素 评价指标 评价权重 评价属性 评价属性值
s0 = 10 s0 = 6.6 s0 = 3.3 s0 = 0
水文、区域与工程地质及周边环境不确定 工程地质 0.1630 岩石饱和抗压强度/MPa ≥23 15~23 7~15 < 7
0.0544 岩体完整性 完整 块状 碎裂 破碎
区域地质 0.0457 地质构造 其他区域 背斜与向斜转折处 向斜轴部 背斜轴部
地面坡度 0.1184 地面坡度/(°) < 10 10~30 30~50 ≥50
地面标高 0.0395 地面标高/m ≥325 250~325 175~250 < 175
基岩裂隙水 0.0526 是否存在基岩裂隙水 不存在 ? ? 存在
地震震级 0.0087 地震震级 < 4 4~5 5~6 ≥4
洪水 0.0438 地面标高/m ≥194 179~194 164~179 < 164
工程征地与动拆迁影响 土地用地类型 0.1128 土地等级 IV级 III级 II级 I级
区域GDP 0.0226 人均GDP(万元) < 5 5~10 10~15 ≥15
区域人口 0.0226 常住人口(万人) < 20 20~40 40~60 ≥60
不良地质条件 地质灾害 0.2631 是否存在地质灾害 不存在 ? ? 存在
周边环境污染或破坏 广场 0.0526 评价体素埋深/m ≥5 4~5 3~4 < 3
绿地 0.0526 评价体素埋深/m ≥5 4~5 3~4 < 3
道路 0.0526 评价体素埋深/m ≥7 6~7 5~6 < 5
Tab.2 Evaluation basis and initial weight of non-control index
综合评价得分 资源质量
7.5~10
5~7.5 较高
2.5~5 较低
0~2.5
Tab.3 UUSR grade classification
Fig.8 Three-dimensional UUSR evaluation results
Fig.9 UUSR grade distribution in different depths
Fig.10 Visualization of evaluation results based on spatial analysis
Fig.11 Risk analysis of underground transit line construction
[1]   CHEN Z L, CHEN J Y, LIU H, et al Present status and development trends of underground space in Chinese cities: evaluation and analysis[J]. Tunnelling and Underground Space Technology, 2018, 71: 253- 270
doi: 10.1016/j.tust.2017.08.027
[2]   朱合华, 丁文其, 乔亚飞, 等 简析我国城市地下空间开发利用的问题与挑战[J]. 地学前缘, 2019, 26 (3): 22- 31
ZHU He-hua, DING Wen-qi, QIAO Ya-fei, et al Issues and challenges in urban underground space utilization in China[J]. Earth Science Frontiers, 2019, 26 (3): 22- 31
[3]   ADMIRAAL H, CORNARO A Why underground space should be included in urban planning policy and how this will enhance an urban underground future[J]. Tunnelling and Underground Space Technology, 2016, 55: 214- 220
doi: 10.1016/j.tust.2015.11.013
[4]   蔚芳, 詹小稳 基于生境质量与碳储量的城市刚性开发边界划定[J]. 浙江大学学报:工学版, 2019, 53 (8): 1478- 1487
WEI Fang, ZHAN Xiao-wen Delineation of rigid urban growth boundary based on habitat quality and carbon storage[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (8): 1478- 1487
[5]   熊自明, 卢浩, 王明洋, 等 我国大型岩土工程施工安全风险管理研究进展[J]. 岩土力学, 2018, 39 (10): 3703- 3716
XIONG Zi-ming, LU Hao, WANG Ming-yang, et al Research progress on safety risk management for large scale geotechnical engineering construction in China[J]. Rock and Soil Mechanics, 2018, 39 (10): 3703- 3716
[6]   范雪婷, 李明巨, 潘九宝, 等 南京地铁沿线地面沉降监测与危险性评价[J]. 测绘通报, 2019, 65 (10): 123- 126
FAN Xue-ting, LI Ming-ju, PAN Jiu-bao, et al Monitoring and risk assessment of land subsidence along Nanjing subway[J]. Bulletin of Surveying and Mapping, 2019, 65 (10): 123- 126
[7]   彭建, 柳昆, 郑付涛, 等 基于AHP的地下空间开发利用适宜性评价[J]. 地下空间与工程学报, 2010, 6 (4): 688- 694
PENG Jian, LIU Kun, ZHENG Fu-tao, et al Evaluation for the suitability of underground space exploitation and utilization based on AHP[J]. Chinese Journal of Underground Space and Engineering, 2010, 6 (4): 688- 694
[8]   LU Z, WU L, ZHUANG X, et al Quantitative assessment of engineering geological suitability for multilayer urban underground space[J]. Tunnelling and Underground Space Technology, 2016, 59: 65- 76
doi: 10.1016/j.tust.2016.06.003
[9]   黄静莉, 王清 基于粗糙集的地下空间岩土体属性重要性评估[J]. 地下空间与工程学报, 2015, 11 (3): 547- 550
HUANG Jing-li, WANG Qing Importance evaluation of rock and soil mass attribute in underground space based on the theory of rough set[J]. Chinese Journal of Underground Space and Engineering, 2015, 11 (3): 547- 550
[10]   KAUFMAN A, COHEN D, YAGEL R Volume graphics[J]. IEEE Computer, 1993, 26: 51- 64
doi: 10.1109/MC.1993.274942
[11]   NOLDE M, SCHWANEBECK M, DETHLEFSEN F, et al Utilization of a 3D webGIS to support spatial planning regarding underground energy storage in the context of the German energy system transition at the example of the federal state of Schleswig–Holstein[J]. Environmental Earth Sciences, 2016, 75 (18): 1284
doi: 10.1007/s12665-016-6089-0
[12]   吴立新, 姜云, 车德福, 等 城市地下空间资源质量模糊综合评估与3D可视化[J]. 中国矿业大学学报, 2007, 36 (1): 97- 102
WU Li-xin, JIANG Yun, CHE De-fu, et al Fuzzy synthesis evaluation and 3D visualization for resource quality of urban underground space[J]. Journal of China University of Mining and Technology, 2007, 36 (1): 97- 102
doi: 10.3321/j.issn:1000-1964.2007.01.019
[13]   叶菁, 侯卫生, 邓东成, 等 基于可变模糊集的城市地下空间资源三维质量评价[J]. 资源科学, 2016, 38 (11): 2147- 2156
YE Jing, HOU Wei-sheng, DENG Dong-cheng, et al 3D quality assessment of urban underground space resources based on variable fuzzy set[J]. Resources Science, 2016, 38 (11): 2147- 2156
[14]   陈前虎, 黄杉, 华晨 山地丘陵可持续开发的用地评价模型与应用: 以浙江省开化县工业新城为例[J]. 浙江大学学报:工学版, 2009, 43 (11): 2100- 2106
CHEN Qian-hu, HUANG Shan, HUA Chen Land use assessment model of upland sustainable development and its application: a case study of new industrial town in Kaihua, Zhejiang Province[J]. Journal of Zhejiang University: Engineering Science, 2009, 43 (11): 2100- 2106
[15]   江思义, 王启耀, 李春玲, 等 基于专家-层次分析法的地下空间适宜性评价[J]. 地下空间与工程学报, 2019, 15 (5): 1290- 1299
JIANG Si-yi, WANG Qi-yao, LI Chun-ling, et al Evaluation suitability for the underground space using expert-analytic hierarchy process[J]. Chinese Journal of Underground Space and Engineering, 2019, 15 (5): 1290- 1299
[16]   胡学祥, 刘干斌, 陶海冰 基于ArcGIS宁波市地下空间开发适宜性评价研究[J]. 地下空间与工程学报, 2016, 12 (6): 1439- 1444
HU Xue-xiang, LIU Gan-bin, TAO Hai-bing Research on evaluation suitability for the development of underground space in Ningbo city based on ArcGIS[J]. Chinese Journal of Underground Space and Engineering, 2016, 12 (6): 1439- 1444
[17]   徐利华, 陈早生 二值图像中的游程编码区域标记[J]. 光电工程, 2004, 31 (6): 63- 65
XU Li-hua, CHEN Zao-sheng Region labeling based on run-length coding for binary image[J]. Opto-Electronic Engineering, 2004, 31 (6): 63- 65
[18]   中华人民共和国行业标准编写组. 城市轨道交通地下工程建设风险管理规范: GB 50652—2011 [S]. 北京: 中国建筑工业出版社, 2011.
[19]   PENG J, PENG F L A GIS-based evaluation method of underground space resources for urban spatial planning: Part 1 methodology[J]. Tunnelling and Underground Space Technology, 2018, 74: 82- 95
doi: 10.1016/j.tust.2018.01.002
[20]   秦鹏, 王英华, 王维汉, 等 河流健康评价的模糊层次与可变模糊集耦合模型[J]. 浙江大学学报: 工学版, 2011, 45 (12): 2169- 2175
QIN Peng, WANG Ying-hua, WANG Wei-han, et al Integrated model of fuzzy analytical hierarchy process and variable fuzzy set model on evaluating river health system[J]. Journal of Zhejiang University: Engineering Science, 2011, 45 (12): 2169- 2175
[21]   胥犇, 王华牢, 夏才初 盾构隧道结构病害状态综合评价方法研究[J]. 地下空间与工程学报, 2010, 6 (1): 201- 207
XU Ben, WANG Hua-lao, XIA Cai-chu Study on comprehensive evaluation of shield tunnel structural defections[J]. Chinese Journal of Underground Space and Engineering, 2010, 6 (1): 201- 207
[1] Jing-xin CHANG,Xian-jun GAO,Yuan-wei YANG,Shao-hua LI,Ping WANG. Building boundary optimization method based on object-oriented contour constraint GGVF Snake model[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1847-1855.
[2] Shu-hao RAN,Yu-long HU,Yuan-wei YANG,Xian-jun GAO,Xi LI,Ming-zhu CHEN. Building extraction from high resolution remote sensing image based on samples morphological transformation[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 996-1006.