Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Mechanical Engineering and Energy Engineering     
Rapid calibration based on SQP algorithm for coordinate frame of localizers
WANG Qing, YU Xiao guang, Qiao Ming jie, ZHAO An an, CHENG Liang, LI Jiang xiong, KE Ying lin
1 Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China;
2. AVIC Xian Aircraft Industry (Group) Company LTD., Xian, 710089, China
Download:   PDF(2175KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  
A rapid calibration method based on sequential quadratic programming (SQP) optimization algorithm for coordinate frame was researched, to address the calibration problems of movable numerical controlled localizers adopted in airplane digital assembly system. When the device was at zero position, the positions of marker points preset on localizers in device coordinate were the theoretical positions and marked as device coordinate frame. The singular value decomposition method was used to solve the least squares model of deviation between actual and theoretical values of marker points; zero calibration was performed. In the case of marker points deviate caused by the localizers move and reposition, SQP optimization algorithm was used for rapid calibration of coordinate frame. The comparison results of zero calibration and rapid calibration of coordinate frame show that rapid calibration can reduce the times of laser tracker measurement; errors arising in station movement was eliminated;the positioning accuracy of localizer can be guaranteed as high as 0.05 mm with the calibration
efficiency being improved, which meets the high accuracy requirement in localizing system of large airplane digital assembly.


Published: 06 March 2017
CLC:  TP 273  
Cite this article:

WANG Qing, YU Xiao guang, Qiao Ming jie, ZHAO An an, CHENG Liang, LI Jiang xiong, KE Ying lin. Rapid calibration based on SQP algorithm for coordinate frame of localizers. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(2): 319-327.


基于序列二次规划算法的定位器坐标快速标定方法

针对飞机数字化装配系统中可移动数控定位器坐标标架的标定问题,提出一种基于序列二次规划(SQP)优化算法的快速标定方法.在定位器上预设标记点,以设备处于零点位置时标记点在设备坐标系下的位置为理论位置,标记设备坐标标架.采用奇异值分解法求解标记点实测与理论坐标偏差的最小二乘模型,进行零位标定.针对定位器移位复位操作所致标记点偏移的情况,利用SQP优化算法计算定位器坐标标架.对零位标定及快速标定实例结果进行对比分析,结果表明,快速标定可减少激光跟踪仪的测量次数,有效避免转站误差,在提高标定效率的同时确保定位器定位精度高达0.05 mm,满足了大型飞机数字化装配中定位系统的高精度要求.

[1] 李晨,方强,李江雄.基于三坐标定位器的大部件调姿机构误差分析[J].机电工程,2010,27(03):613.
LI C, FANG Q, LI J. Error analysis of 3axis locator based pose adjustment mechanism [J]. Journal of Mechanical and Electrical Engineer,2010,27(03): 613.
[2] 郭志敏,蒋君侠,柯映林.基于POGO柱三点支撑的飞机大部件调资方法[J]. 航空学报,2009,30(07): 712.
GUO Z, JIANG J, KE Y. Posture alignment for large aircraft parts based on three POGO sticks distributed support [J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(07): 712.
[3] 郭志敏,蒋君侠,柯映林.一种精密三坐标POGO柱设计与精度研究[J].浙江大学学报:工学版,2009,43(09):914.
GUO Z, JIANG J, KE Y. Design and accuracy for POGO stick with three axis [J]. Journal of Zhejiang University :Engineering Science, 2009, 43(09): 914.
[4] 应征.飞机部件数字化调姿过程建模与仿真关键技术研究[D].杭州: 浙江大学,2013.
YING Z. Study on modeling and simulation of alignment pose process of aircraft component [D].Hangzhou: Zhejiang University, 2013.
[5] WANG W, LIU F, YUN C. Calibration method of robot base frame using unit quaternion form [J]. Precision Engineer,2015 41(3): 47-54.
[6] 孟晓桥,胡占义.摄像机自标定方法的研究与进展[J].自动化学报,2003,29(01): 110-124.
MENG Xiaoqiao, HU Zhanyi. Recent progress in camera selfcalibration [J]. Acta Automation Sinica, 2003, 29(01): 110-124.
[7] 王东署,李光彦,徐方,等.机器人标定算法及其在打磨机器人中的应用[J].机器人学报,2005,27(06):491-496.
WANG Dongshu, LI Guangyan, XU Fang, et al.Robot calibration algorithms and their application on polishing robot[J]. Robot, 2005, 27(06): 491-496.
[8] 杨晓钧,李兵,张东来.并联机床运动学自标定方法研究[J].计算机集成制造系统,2008,14(09):1825-1830.
YANG Xiaojun, LI Bing, ZHANG Donglai. Kinematics automatic calibration method for parallel tool[J]. Computer integrated manufacturing system, 2008, 14(09): 1825-1830.
[9] 邓德标,方源敏,赵子龙,等.空间球状物体的数据采集与分析[J].测绘科学学报,2013,38(05): 146-148.
DENG Dibiao, FANG Yuanmin, ZHAO Zilong. Data collection and analysis about spatial spherical objects [J]. Science of Surveying and Mapping, 2013, 38(05): 146-148.
[10] EGGERT D W, LORUSSO A, FISHER R B. Estimating 3D rigid body transformations: a comparison of four major algorithms [J]. Machine Vision and Applications,1997(9): 272-290.
[11] WANG Z, JEPSON A. A new closedform solution for absolute orientation [C]∥ IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE, 1994: 129-134.
[12] ZHANG J L, ZHANG X S. A SQP method for inequality constrained optimization [J]. Acta Mathmaticae Applicatea Sinica, 2002, 18(1): 77-84.
[1] Kai LIU,Xiao-jun JI,Zhong-hua ZHAO,Yi-wen CAO,Jian YANG,Xiao-feng PANG. Dual terminal differential improved recognition algorithm for car PEPS system[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2020, 54(10): 1892-1898.
[2] Jian LI,Wen-cheng TANG. Sliding mode control for ball screw drives based on H∞ theory[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2020, 54(8): 1497-1504.
[3] Jie ZHAO,Hai-bin QU,Geng TIAN,Yan-ding WEI. Quality consistency evaluation method for granules in fluidized bed granulation based on powder properties[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2020, 54(2): 374-380.
[4] Mu-feng WANG,Bu-gong XU,Li-ding CHEN. H control for cyber-physical system under periodic denial-of-service jamming attack[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(11): 2146-2153.
[5] Ai-guo WU,Shao-hua WU,Na DONG. Nonsingular fast terminal sliding model fuzzy control of robotic manipulators[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(5): 862-871.
[6] Xiao-chen LI,Hong-ye SU,Han-shan SHAO,Lei XIE. Gradient information-based strategy for real time optimization and control integration[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(5): 843-851.
[7] ZHOU Feng, GU Lin yi, LUO Gao sheng, CHEN Zong heng. Adaptive backstepping sliding mode control for electro hydraulic proportional propulsion system[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(6): 1111-1118.
[8] JIA Chi qian, FENG Dong qin. Security assessment for industrial control systems based on fuzzy analytic hierarchy process[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 759-765.
[9] JIN Xin, LIANG Jun. Multivariable offset free model predictive control in dynamic PLS framework[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 750-758.
[10] FEI Shao hua, LIU Dan, QIAO Ming jie, ZHANG Ming,FANG Qiang. Synchronous control system design of dual drive end frame executed platform[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(1): 85-92.
[11] SONG Zhi qiang, ZHOU Xian zhong, LI Hua xiong. Coordinated stalking tracking for multiple unmanned ground vehicles[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(12): 2349-2354.
[12] QIU Xiang, SONG Hai yu, YU Li. Bullwhip effect control based on average dwell time method[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(10): 1909-1915.
[13] WANG Ri jun, BAI Yue, XU Zhi jun, GONG Xun, ZHANG Xin, TIAN Yan tao. Fuzzy self adjusting tracking control based on disturbance observer for airborne platform mounted on multi rotor unmanned aerial vehicle[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(10): 2005-2012.
[14] QIN Zhan-bin, CHEN Fei-fei, JIN Bo, ZHANG Lu-lu. PID auto tuning method for spool position control of electro hydraulic proportional valve[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1503-1508.
[15] SUN Wen-da, LI Ping, FANG Zhou. Time-delay uncertain robust optimal control on unmanned helicopter based on dynamic inversion[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(7): 1326-1334.