|
|
Stochastic differential equation of traffic flow model based on distribution of lane-changing duration |
Zhong WU( ),Ming-yan LIANG,Hai-fei YANG*( ) |
College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China |
|
|
Abstract A mechanical equation of stochastic traffic flow considering the randomness of lane change time was proposed, on the basis of summarizing the development of stochastic traffic flow theory. The numerical method of traffic flow equation including lane change behavior was given. The method combined the density decomposition of lane change time and the difference solution of partial differential equation. The evolution probability of traffic velocity of expressway weaving area in the spatial-temporal domain was solved. The random probability of the evolving trend of traffic flow velocity was obtained and expressed as the probability density of the velocity change. Results show that the stochastic differential equations of traffic flow mechanics and their numerical solutions can describe the stochastic characteristics of complex traffic flows. Velocity probability density function makes up the random characteristics of traffic flow velocity which is difficult to be expressed by other traffic flow equations. It provides a new research method for the in-depth study of traffic flow evolution law of traffic facilities under congestion conditions. It provides a new research method for an in-depth study of the evolution of traffic flow under congested conditions, and provides a theoretical analysis method for the reliability of capacity and other parameters in the design of traffic facilities and traffic control.
|
Received: 22 September 2022
Published: 31 August 2023
|
|
Fund: 国家自然科学基金资助项目(71801080) |
Corresponding Authors:
Hai-fei YANG
E-mail: wuhohai@126.com;yanghaifei@hhu.edu.cn
|
基于换道时间分布的交通流随机微分方程
在总结随机交通流理论发展的基础上,提出考虑换道时间随机性的随机交通流动力学方程,给出包括换道行为的交通流方程数值解法. 解法结合换道时间的密度分解和偏微分方程的差分求解,对快速路交织区车流速度在时空上的演变概率进行求解,得到交通流速度演变趋势的随机可能性,并表达为速度变化的概率密度. 求解结果表明,交通流动力学随机微分方程及其数值解法能够描述复杂交通流的随机特性,速度概率密度函数弥补了其他交通流方程难以表达的车流速度随机特征,为深入研究拥堵工况的交通流演变规律提供了新研究手段,也为交通设施和交通控制设计提供了通行能力之类的参量在可靠性上的理论分析方法.
关键词:
换道时间,
交织区,
交通流,
概率分布,
随机微分方程
|
|
[1] |
ZHENG Z, AHN S, MONSERE C M Impact of traffic oscillations on freeway crash occurrences[J]. Accident Analysis and Prevention, 2010, 42 (2): 626- 636
doi: 10.1016/j.aap.2009.10.009
|
|
|
[2] |
STORM P J, MANDJES M, van AREM B Efficient evaluation of stochastic traffic flow models using Gaussian process approximation[J]. Transportation Research Part B: Methodological, 2022, 164: 126- 144
doi: 10.1016/j.trb.2022.08.003
|
|
|
[3] |
BOUADI M, JIA B, JIANG R, et al Stochastic factors and string stability of traffic flow: analytical investigation and numerical study based on car-following models[J]. Transportation Research Part B: Methodological, 2022, 165: 96- 122
doi: 10.1016/j.trb.2022.09.007
|
|
|
[4] |
龚鲁光. 随机微分方程引论: 第2版[M]. 北京: 北京大学出版社, 1995.
|
|
|
[5] |
OKSENDAL B. Stochastic differential equations [M]. 6th ed. New York: Springer-Verlag Heidelberg, 2012.
|
|
|
[6] |
SINGH S K, ACHARYA S K A Bayesian inference to estimate change point for traffic intensity in M/M/1 Queueing Model[J]. Opsearch, 2021, 59 (4): 166- 206
|
|
|
[7] |
LIGHTHILL M J, WHITHAM G B On kinematic waves. II. a theory of traffic flow on long crowded roads.[J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1955, 229 (1178): 317- 345
|
|
|
[8] |
RICHARDS P I Shock waves on the highway[J]. Operations Research, 1956, 4 (1): 42- 51
doi: 10.1287/opre.4.1.42
|
|
|
[9] |
王昊, 杨万波 速度梯度模型的高速公路交通流状态估计方法[J]. 哈尔滨工业大学学报, 2015, 47 (9): 84- 89 WANG Hao, YANG Wan-bo Freeway traffic state estimation by using speed gradient model[J]. Journal of Harbin Institute of Technology, 2015, 47 (9): 84- 89
|
|
|
[10] |
TSCHARAKTSCHIEW S Why are highway speed limits really justified? An equilibrium speed choice analysis[J]. Transportation Research Part B: Methodological, 2020, 138 (3): 317- 351
|
|
|
[11] |
周文海, 李舒健, 董力耘 非均匀路段交通流的元胞自动机模拟[J]. 上海大学学报: 自然科学版, 2022, 28 (4): 594- 607 ZHOU Wen-hai, LI Shu-jian, DONG Li-yun Simulation of traffic flow on non-uniform road sections with cellular automaton model[J]. Journal of Shanghai University: Natural Science Edition, 2022, 28 (4): 594- 607
|
|
|
[12] |
帅斌, 秦梦瑶, 许旻昊 基于元胞自动机的高速铁路列车运行仿真研究[J]. 计算机仿真, 2022, 39 (8): 153- 159 SHUAI Bin, QIN Meng-yao, XU Min-hao Simulation study of high-speed railroad train operation based on cellular automata[J]. Computer Simulation, 2022, 39 (8): 153- 159
|
|
|
[13] |
HASSANIN O, WANG X, WU X, et al Efficiency performance and safety evaluation of the responsibility-sensitive safety in freeway car-following scenarios using automated longitudinal controls[J]. Accident Analysis and Prevention, 2022, 177: 106799
doi: 10.1016/j.aap.2022.106799
|
|
|
[14] |
潘义勇, 管星宇 基于分位数回归的随机优化速度跟驰模型[J]. 浙江大学学报: 工学版, 2022, 56 (8): 1553- 1559 PAN Yi-yong, GUAN Xing-yu Stochastic optimal velocity car-following model based on quantile regression[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (8): 1553- 1559
|
|
|
[15] |
TAJALLI M, NIROUMAND R, HAJBABAIE A Distributed cooperative trajectory and lane changing optimization of connected automated vehicles: freeway segments with lane drop[J]. Transportation Research Part C: Emerging Technologies, 2022, 143: 103761
doi: 10.1016/j.trc.2022.103761
|
|
|
[16] |
程晓明, 李文权 元胞自动机交通流模型的随机规则[J]. 交通运输工程与信息学报, 2007, (3): 96- 99 CHENG Xiao-ming, LI Wen-quan Randomization rules of 1D cellular automaton traffic flow model[J]. Journal of Transportation Engineering and Information, 2007, (3): 96- 99
doi: 10.3969/j.issn.1672-4747.2007.03.018
|
|
|
[17] |
刘立英, 李新刚, 贾斌 基于元胞自动机模型的交织区通行能力特性分析[J]. 交通信息与安全, 2013, 31 (3): 28- 32 LIU Li-ying, LI Xin-gang, JIA Bin Analysis of capacity of weaving section based on cellular automata model[J]. Journal of Transport Information and Safety, 2013, 31 (3): 28- 32
|
|
|
[18] |
LI X, GAO Z, JIA B. Capacity analysis of type-A weaving section by using cellular automata model [C]// Transportation Research Board. Kunming: 7th International Conference on Traffic and Transportation Studies, 2010: 1010-1018.
|
|
|
[19] |
JIA B, GAOU J Y Traffic behavior around the weaving section in cellular automata model[J]. International Journal of Modern Physics C, 2010, 21 (3): 409- 422
doi: 10.1142/S012918311001518X
|
|
|
[20] |
HELBING K D Three-phase traffic theory and two-phase models with a fundamental diagram in the light of empirical stylized facts[J]. Transportation Research Part B: Methodological, 2010, 44 (8): 983- 1000
|
|
|
[21] |
BAËR N, BOUCHERIE R J, van OMMEREN J C W Threshold queueing to describe the fundamental diagram of uninterrupted traffic[J]. Transportation Science, 2019, 53 (2): 585- 596
doi: 10.1287/trsc.2018.0850
|
|
|
[22] |
WANG Y, LI X, TIAN J, et al Stability analysis of stochastic linear car-following models[J]. Transportation Science, 2020, 54 (1): 274- 297
doi: 10.1287/trsc.2019.0932
|
|
|
[23] |
姚佼, 张凯敏, 徐洁琼 基于离散多项Logit模型的多时段控制过渡方案选择[J]. 公路交通科技, 2018, 35 (10): 104- 110 YAO Jiao, ZHANG Kai-min, XU Jie-qiong Multinomial logit model based time-of-day control transition scheme selection[J]. Journal of Highway and Transportation Research and Development, 2018, 35 (10): 104- 110
|
|
|
[24] |
NEWELL G F Memoirs on highway traffic flow theory in the 1950s[J]. Operations Research, 2002, 50 (1): 173- 178
doi: 10.1287/opre.50.1.173.17802
|
|
|
[25] |
GAZIS D C The origins of traffic theory[J]. Operations Research, 2002, 50 (1): 69- 77
doi: 10.1287/opre.50.1.69.17776
|
|
|
[26] |
马庆禄, 傅宝宇, 曾皓威 智能网联环境下异质交通流基本图和稳定性分析[J]. 交通信息与安全, 2021, 39 (5): 76- 84 MA Qing-lu, FU Bao-yu, CENG Hao-wei Fundamental diagram and stability analysis of heterogeneous traffic flow in a connected and autonomous environment[J]. Journal of Transport Information and Safety, 2021, 39 (5): 76- 84
doi: 10.3963/j.jssn.1674-4861.2021.05.010
|
|
|
[27] |
KWON J, BARKLEY T, HRANAC R, et al Decomposition of travel time reliability into various sources: incidents, weather, work zones, special events, and base capacity[J]. Transportation Research Record, 2011, 2229 (1): 28- 33
doi: 10.3141/2229-04
|
|
|
[28] |
沈琪梦. 基于时变特性的城市交通出行路径可靠性研究[D]. 北京: 北京交通大学, 2020. SHEN Qi-meng. Study on the reliability of urban traffic path based on time-varying characteristics[D]. Beijing: Beijing Jiaotong University, 2020.
|
|
|
[29] |
李小静, 刘林忠, 牟海波 基于四阶矩的路网总行程时间可靠性评价[J]. 交通运输系统工程与信息, 2019, 19 (1): 145- 150 LI Xiao-jing, LIU Lin-zhong, MOU Hai-bo Evaluation of road network total travel time reliability based on fourth-moment[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19 (1): 145- 150
|
|
|
[30] |
徐红利, 刘煜昊, 徐薇, 等 考虑决策惯性的随机网络路径选择与交通流分配模型[J]. 系统工程理论与实践, 2021, 41 (4): 1010- 1017 XU Hong-li, LIU Yu-hao, XU Wei, et al Route choice model in stochastic network and its application in traffic assignment with consideration to travelers' decision inertia[J]. Systems Engineering: Theory and Practice, 2021, 41 (4): 1010- 1017
|
|
|
[31] |
何胜学 基于有效路径集逐步生成的网络交通流分配方法[J]. 武汉理工大学学报: 交通科学与工程版, 2021, 45 (5): 817- 821 HE Sheng-xue Network traffic assignment method based on gradually extending the set of effective paths[J]. Journal of Wuhan University of Technology: Transportation Science and Engineering, 2021, 45 (5): 817- 821
|
|
|
[32] |
LAVAL J A, DAGANZO C F Lane-changing in traffic streams[J]. Transportation Research Part B: Methodological, 2006, 40 (3): 251- 264
doi: 10.1016/j.trb.2005.04.003
|
|
|
[33] |
吴中, 熊天成, 杨海飞 考虑换道过程影响的城市交通流动力学方程[J]. 华东交通大学学报, 2020, 37 (6): 68- 74 WU Zhong, XIONG Tian-cheng, YANG Hai-fei Dynamic equation of urban traffic flow considering the influence of lane-changing process enhanced publishing[J]. Journal of East China Jiaotong University, 2020, 37 (6): 68- 74
|
|
|
[34] |
JIANG R, WU Q, ZHU Z A new dynamics model for traffic flow[J]. Chinese Science Bulletin, 2001, 46 (4): 345- 348
doi: 10.1007/BF03187201
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|