Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (8): 1541-1550    DOI: 10.3785/j.issn.1008-973X.2023.08.007
    
Traffic flow prediction model based on spatio-temporal graph convolution with multi-information fusion
Chuang MENG(),Hui WANG*()
College of Data Science and Application, Inner Mongolia University of Technology, Hohhot 010080, China
Download: HTML     PDF(1445KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An improved spatio-temporal graph convolution gated neural network with multi-information fusion of distance and periodic factors was proposed, in order to further explore the spatio-temporal characteristics of traffic flow and improve the prediction accuracy. Each section of the road network was taken as the node and the road network diagram structure was established according to the adjacency relationship between the sections. Considering the influence of distance between sections on spatial correlation, the spatial influence degree between sections was calculated, and different weight values were given to the adjacency matrix of the graph. In the model construction, space graph convolution module and time series prediction module were designed. The spatial feature information was extracted by the spatial graph convolution module, and the extracted spatial feature information was fused with the traffic flow cycle sequence information, and then introduced into the time series prediction module. The gating mechanism algorithm of gated recurrent unit (GRU) was redesigned to achieve the purpose of multi-source information input, and finally the predictive output was obtained. The real highway traffic flow PEMS data set was used for multi-period testing. Experimental results show that the prediction error of the proposed model is lower and the prediction performance is better than that of the current prediction method based on graph convolution.



Key wordsintelligent transportation      traffic flow forecasting      spatio-temporal sequence prediction      spatio-temporal correlation      graph convolutional network      gating recurrent uint     
Received: 16 September 2022      Published: 31 August 2023
CLC:  TP 181  
Fund:  内蒙古自治区自然科学基金资助项目(2021MS06019);内蒙古高等学校科学研究资助项目(NJZY21317);内蒙古自治区直属高校基本科研业务费资助项目(JY20222077)
Corresponding Authors: Hui WANG     E-mail: 1415547767@qq.com;1227001857@qq.com
Cite this article:

Chuang MENG,Hui WANG. Traffic flow prediction model based on spatio-temporal graph convolution with multi-information fusion. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1541-1550.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.08.007     OR     https://www.zjujournals.com/eng/Y2023/V57/I8/1541


多信息融合的时空图卷积交通流量预测模型

为了深入挖掘交通流量的时空特征以提高预测精度,提出改进的融合距离与周期性因素的多信息融合的时空图卷积门控神经网络. 将路网中各个路段作为节点并根据路段间邻接关系建立路网图结构;考虑路段间距离对空间相关性的影响,计算路段之间的空间影响度大小,给予图邻接矩阵不同的权重. 在模型构建中,设计空间图卷积模块与时间序列预测模块;通过空间图卷积模块提取空间特征信息,并将提取的空间特征信息与交通流量周期序列信息相融合,传入时间序列预测模块;重新设计门控循环单元(GRU)的门控机制算法达到多源信息共同输入的目的,最终得到预测输出. 实验在真实的公路交通流量PEMS数据集上进行多时段测试,结果表明,与目前基于图卷积的预测方法相比,所设计的模型预测误差更低,预测性能更优.


关键词: 智能交通,  交通流量预测,  时空序列预测,  时空相关性,  图卷积网络,  门控循环单元 
Fig.1 Traffic flow modeling based on graph structure
Fig.2 Definition of road section
Fig.3 Construction of adjacency matrix
Fig.4 Fusion cycle time series
Fig.5 Network architecture of deep spatio-temporal graph convolutional gated neural network model
Fig.6 Gating mechanism of improved GRU unit
数据集 检测器数量 时间范围 数据量
PEMS03 358 2018.09.01—2018.11.30 26208×358
PEMS03-33 33 2018.09.01—2018.11.30 26208×33
PEMS04 307 2018.01.01—2018.02.28 16992×307
PEMS08 170 2016.07.01—2016.08.31 17856×170
Tab.1 Overview of traffic flow experimental datasets
Ns Ne dis
311903 318282 0.600
311930 318282 0.600
312010 313772 4.274
312098 314371 6.036
$\vdots $ $\vdots $ $\vdots $
318844 318775 0.302
Tab.2 Reationship between detector position and adjacent position
$t$ /min PEMS04 PEMS08
RMSE MAE RMSE MAE
5 28.34 18.13 21.54 14.13
10 29.34 18.55 22.25 14.61
15 30.02 19.19 23.02 15.09
20 30.86 19.72 23.78 15.76
25 31.47 20.25 24.32 16.06
30 32.17 20.78 24.83 16.31
35 33.07 21.31 25.46 16.83
40 33.81 21.85 25.81 17.02
45 34.24 22.38 26.43 17.34
50 34.72 22.91 26.91 17.56
55 35.68 23.52 27.15 17.90
60 36.37 23.98 27.64 18.35
Tab.3 RMSE and MAE results of model under different forecasting time ranges
Fig.7 MAE and RMSE for different models at multiple forecasting time ranges
模型 PEMS04 PEMS08
RMSE MAE RMSE MAE
LSTM 43.17 28.83 33.18 23.30
GRU 42.83 28.32 32.97 23.15
STGCN[18] 38.29 25.15 27.87 18.88
MCSTGCN[15] 35.64 22.73 26.47 17.47
STSGCN[19] 33.65 21.19 26.80 17.13
ASTGCN[20] 32.82 21.80 25.27 16.63
本研究模型 32.51 21.04 24.92 16.41
Tab.4 Error of different models on PEMS04 and PEMS08 datasets
Fig.8 Effect of improved adjacency matrix on model error
Fig.9 Traffic flow prediction results of model on different datasets
[1]   祁朵, 毛政元 基于自适应时序剖分与KNN的短时交通流量预测[J]. 地球信息科学学报, 2022, 24 (2): 339- 351
QI Duo, MAO Zheng-yuan Short-term traffic flow prediction based on adaptive time Slice and KNN[J]. Journal of Geo-Information Science, 2022, 24 (2): 339- 351
[2]   康军, 段宗涛, 唐蕾, 等 一种LS-SVM在线式短时交通流预测方法[J]. 计算机应用研究, 2018, 35 (10): 2965- 2968
KANG Jun, DUAN Zong-tao, TANG Lei, et al LS-SVM online shrot traffic flow prediction method[J]. Computer Application Research, 2018, 35 (10): 2965- 2968
[3]   林浩, 李雷孝, 王慧, 等 基于相关向量机和模糊综合评价的路况预测模型[J]. 浙江大学学报: 工学版, 2021, 55 (6): 1072- 1082
LIN Hao, LI Lei-xiao, WANG Hui, et al Model based on relevance vector machine and fuzzy comprehensive evaluation for road condition prediction[J]. Journal of ZheJiang University: Engineering Science, 2021, 55 (6): 1072- 1082
[4]   KANG D Q, LV Y S, CHEN Y Y. Short-term traffic flow prediction with LSTM recurrent neural network[C]// 2017 IEEE 20th International Conference on Intelligent Transportation Systems. Yokohama: IEEE, 2017: 1-6.
[5]   GAO Y, ZHOU C J, RONG J, et al, Short-term traffic speed forecasting using a deep Learning method based on multitemporal traffic flow volume[J]. IEEE Access, 2022, 10: 82384-82395.
[6]   ZHENG Z, CHEN W, WU X, et al LSTM network: a deep learning approach for short-term traffic forecast[J]. Intelligent Transport Systems, 2017, 11 (2): 68- 75
doi: 10.1049/iet-its.2016.0208
[7]   SHI X, CHEN Z, WANG H, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[J]. MIT Press, 2015, 1: 802-810.
[8]   晏臻, 于重重, 韩璐, 等 基于CNN+LSTM的短时交通流量预测方法[J]. 计算机工程与设计, 2019, 40 (9): 2620- 2624+2659
YAN Zhen, YU Chong-chong, HAN Lu, et al Short-term traffic flow forecasting method based on CNN+LSTM[J]. Computer Engineering and Design, 2019, 40 (9): 2620- 2624+2659
doi: 10.16208/j.issn1000-7024.2019.09.038
[9]   王婧娟, 陈庆奎 一种时空注意力网络的交通预测模型[J]. 小型微型计算机系统, 2021, 42 (2): 303- 307
WANG Jin-juan, CHEN Qing-kui Traffic prediction model based on spationtemporal attention network[J]. Mini Microcomputer System, 2021, 42 (2): 303- 307
[10]   罗文慧, 董宝田, 王泽胜 基于CNN-SVR混合深度学习模型的短时交通流预测[J]. 交通运输系统工程与信息, 2017, 17 (5): 68- 74
LUO Wen-hui, DONG Bao-tian, WANG Ze-sheng Short-term traffic flow prediction based on CNN-SVR hybrid deep learning model[J]. Transportation System Engineering and Information, 2017, 17 (5): 68- 74
doi: 10.16097/j.cnki.1009-6744.2017.05.010
[11]   叶景, 李丽娟, 唐臻旭 基于CNN-XGBoost的短时交通流预测[J]. 计算机工程与设计, 2020, 41 (4): 1080- 1086
YE Jing, LI Li-juan, TANG Zhen-xu Short-term traffic flow prediction based on CNN-XGBoost[J]. Computer Engineering and Design, 2020, 41 (4): 1080- 1086
doi: 10.16208/j.issn1000-7024.2020.04.030
[12]   THOMAS N, KIP T, WELLING M. Semi-supervised classification with graph convolutional networks [C]// International Conference on Learning Representations. Toulon: ICLR Institute, 2017.
[13]   SEO Y, DEFFER M, VANDERG P, et al. Structured sequence modeling with graph convolutional recurrent networks [C]// Processing of the 25th International Conference (ICONIP 2018). Siem Reap: Asia Pacific Neural Network Society, 2018: 362-373.
[14]   LI Y , YU R , SHAHABI C , et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting[C]// International Conference on Learning Representations. Vancouver: ICLR Institute, 2018.
[15]   冯宁, 郭晟楠, 宋超, 等 面向交通流量预测的多组件时空图卷积网络[J]. 软件学报, 2019, 30 (3): 759- 769
FENG Ning, GUO Sheng-nan, SONG Chao, et al Multi-component spatial-temporal graph convolution networks for traffic flow forecasting[J]. Journal of Software, 2019, 30 (3): 759- 769
doi: 10.13328/j.cnki.jos.005697
[16]   杨建喜, 郁超顺, 李韧, 等 基于多周期组件时空神经网络的路网通行速度预测[J]. 交通运输系统工程与信息, 2021, 21 (3): 112- 119+139
YANG Jian-xi, YU Chao-shun, LI Ren, et al Traffic network speed prediction via multi-periodic-component spatialtemporal neural network[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21 (3): 112- 119+139
[17]   闫旭, 范晓亮, 郑传潘, 等 基于图卷积神经网络的城市交通态势预测算法[J]. 浙江大学学报: 工学版, 2020, 54 (6): 1147- 1155
YAN Xu, FAN Xiao-liang, ZHENG Chuan-pan, et al Urban traffic flow prediction algorithm based on graph convolutional neural networks[J]. Journal of ZheJiang University: Engineering Science, 2020, 54 (6): 1147- 1155
[18]   LI C , CUI Z , ZHENG W, et al. Spatio-temporal graph convolution for skeleton based action recognition [C]// 32th Association for the Advancement of Artificial Intelligence. New Orleans: AAAI Institute. 2018: 938-946.
[19]   SONG C, LIN Y, GUO S, et al. Spatial-temporal synchronous graph convolutional networks: a new framework for spatial-temporal network data forecasting [C]// 34th Association for the Advancement of Artificial Intelligence. New York: AAAI Institute, 2020: 914-921.
[20]   GUO S , LIN Y , FENG N , et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting [C]// National Conference on Artificial Intelligence. 33th Association for the Advancement of Artificial Intelligence. Hawaii State: AAAI Institute, 2019: 922-929.
[21]   HU Y. Research on city traffic flow forecast based on graph convolutional neural network [C]// 2021 IEEE 2nd International Conference on Big Data. NanChang: Artificial Intelligence and Internet of Things Engineering, 2021: 269-273.
[1] Yan-fen CHENG,Jia-jun WU,Fan HE. Aspect level sentiment analysis based on relation gated graph convolutional network[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 437-445.
[2] Jing-jing ZHANG,Zhao-gong ZHANG,Xin XU. Graph convolution collaborative filtering model combining graph enhancement and sampling strategies[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 243-251.
[3] Wei-xiang XU,Nan KANG,Ting XU. Optimal path planning method based on travel plan data[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1542-1552.
[4] Yue HOU,Cheng-yan HAN,Xin ZHENG,Zhi-yuan DENG. Traffic flow data repair method based on spatial-temporal fusion graph convolution[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1394-1403.
[5] Ce GUO,Zhi-wen ZENG,Peng-ming ZHU,Zhi-qian ZHOU,Hui-min LU. Decentralized swarm control based on graph convolutional imitation learning[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1055-1061.
[6] You-wei WANG,Shuang TONG,Li-zhou FENG,Jian-ming ZHU,Yang LI,Fu CHEN. New inductive microblog rumor detection method based on graph convolutional network[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 956-966.
[7] Xiao-gao XU,Ying-jie XIA,Si-yu ZHU,Li KUANG. Cooperative control algorithm of multi-intersection variable-direction lanes based on reinforcement learning[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 987-994, 1005.
[8] Ting WANG,Xiao-fei ZHU,Gu TANG. Knowledge-enhanced graph convolutional neural networks for text classification[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 322-328.
[9] Si CHEN,Xiao-dong CAI,Zhen-zhen HOU,Bo LI. Aggregate graph embedding method based on non-uniform neighbor nodes sampling[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2163-2167.
[10] LIN Sha-Pu, CHEN Guo-Jiang. Intelligent hybrid forecasting technique for short-term traffic flow[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(8): 1473-1478.
[11] CHAI An, DIAO Qian, JIANG Min. Design and development of urban intelligent traffic signal control system[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(7): 1241-1246.