Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2017, Vol. 51 Issue (9): 1727-1734    DOI: 10.3785/j.issn.1008-973X.2017.09.007
Civil and Traffic Engineering     
Repair method for traffic flow fault data based on spatial-temporal correlation
WANG Wei1,2, CHENG Ze-yang1, LIU Meng-yi1,3, YANG Zhao-sheng1,2
1. College of Transportation, Jilin University, Changchun 130022, China;
2. Jilin Provence Key Laboratory of Road Traffic, Jilin University, Changchun 130022, China;
3. Shandong Provincial Key Communications Planning and Design Institute, Jinan 250000, China
Download:   PDF(1325KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Considering the spatial-temporal characteristics of the traffic flow data, a spatial-temporal interpolation repair method based on 3D shape function was proposed to effectively repair the fault data of freeway traffic flow in time. The time interval, distance and time delay parameters were chosen as the extracted evidences of the relevant data, and the proposed method was validated through the actual data of freeway; while, the time series method, the spatial interpolation method, the method based on residual error GM model and the method based on statistical correlation analysis were selected as comparative approaches. Results show that the repair results of the proposed method are better than the results by time series method and spatial interpolation method; in addition, the repair error is lower than other methods. Compared with the method based on residual error GM model and the method based on statistical correlation analysis, the absolute error of the proposed method are reduced by 21.33% and 43.54%, respectively; the root-mean-square error are reduced by 12.87% and 35.08% respectively. The average absolute error rate of the proposed method are reduced by 40% compared with the method based on statistical correlation analysis, which illustrates that the repair precision of the proposed approach is more accurate and it is a kind of effective fault data repair approach.



Received: 16 July 2016      Published: 25 August 2017
CLC:  U491  
Cite this article:

WANG Wei, CHENG Ze-yang, LIU Meng-yi, YANG Zhao-sheng. Repair method for traffic flow fault data based on spatial-temporal correlation. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(9): 1727-1734.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2017.09.007     OR     http://www.zjujournals.com/eng/Y2017/V51/I9/1727


基于时空相关性的交通流故障数据修复方法

为及时对高速公路交通流故障数据进行有效修复,综合考虑交通流数据的时空特性,提出基于3D形函数的时空插值修复方法.以时间间隔、距离和时滞参数作为相关数据的提取依据,以高速公路实际数据对所提出方法进行验证;将实验结果与采用时间序列法、空间插值法、基于灰色残差GM模型以及基于统计相关分析的方法得到的结果进行对比.结果表明,该方法的修复结果优于时间序列法和空间插值法,并且修复误差低于其他方法.其中,与基于灰色残差GM模型和基于统计相关分析的方法相比,该方法的修复结果的均绝对误差分别降低了21.33%和43.54%,均方根误差分别降低了12.87%和35.08%.该方法的修复结果的平均绝对值误差率比基于统计相关分析的方法降低了40%.这表明研究中所提方法的修复精度更高,是一种有效的数据修复方法.

[1] 王英会.高速公路交通流异常数据识别及修复方法研究[D].北京:北京交通大学,2015. WANG Ying-hui. Research on identification and recovery method for abnormal highway traffic flow data[D]. Beijing:Beijing Jiaotong University, 2015.
[2] 陆化普,屈闻聪,孙智源.基于S-G滤波的交通流故障数据识别与修复算法[J].土木工程学报,2015(5):23-128. LU Hua-pu, QU Wen-cong, SUN Zhi-yuan. Detection and repair algorithm of traffic erroneous data based onS-G filtering[J]. China Civil Engineering Journal,2015(5):23-128.
[3] SMITH B, SCHERER W, CONKLIN J. Exploring imputation techniques for missing data in transportation management systems[J]. Transportation Research Record, 2003, 1836(1):132-142.
[4] 姜桂艳.道路交通状态判别技术与应用[M].北京:人民交通出版社,2004:9-14.
[5] MIN W, WYNTER L. Real-time road traffic prediction with spatio-temporal correlations[J]. Transportation Research Part C:Emerging Technologies, 2011, 19(4):606-616.
[6] 邹海翔,乐阳,李清泉,叶嘉安,等.基于Kriging插值的无检测器路段交通数据插补方法[J].交通运输工程学报,2011,11(3):118-126. ZOU Hai-xiang, LE Yang, LI Qing-quan, YE Jia-an, et al. Traffic data interpolation method of non-detection road link based on Kriging interpolation[J]. Journal of Traffic and Transportation Engineering, 2011, 11(3):118-126.
[7] 王佳璆.时空序列数据分析和建模[M].北京:科学出版社,2012.
[8] 甘健胜,洪伟.基于时空数据的线性组合插值模型及其应用[J].福建林学院学报,2006,26(4):318-323. GAN Jian-sheng, HONG Wei. Linear combination interpolation model based on panel data and its application[J]. Journal of Fujian College of Forestry, 2006, 26(4):318-323.
[9] 李莎,舒红,董林.基于时空变异函数的Kriging插值及实现[J].计算机工程与应用,2011,47(23):25-26. LI Sha, SHU Hong, DONG Lin. Research and realization of Kriging interpolation based on spatial-temporal variogram[J]. Computer Engineering and Applications, 2011, 47(23):25-26.
[10] 陆化普,孙智源,屈闻聪.基于时空模型的交通流故障数据修正方法[J].交通运输工程学报,2015,15(6):92-100. LU Hua-pu, SUN Zhi-yuan QU Wen-cong. Repair method of traffic flow malfunction data based on temporal-spatial model[J]. Journal of Traffic and Transportation Engineering 2015, 15(6):92-100.
[11] 陆百川,郭桂林,肖汶谦,等.基于多尺度主元分析法的动态交通数据故障诊断与修复[J].重庆交通大学学报:自然科学版,2016(1):134-137. LU Bai-chuan, GUO Gui-lin, XIAO Wen-qian, et al. Fault diagnosing and modifying of dynamic traffic data based on MSPCA[J]. Journal of Chongqing Jiaotong University:Natural Science, 2016(01):134-137.
[12] 邹晓芳.城市快速路交通流故障数据修复方法研究[D].北京:北京京交通大学,2014. ZOU Xiao-fang. Research on repair methods of urban expressway traffic flow fault data[D]. Beijing:Beijing Jiaotong University, 2014.
[13] 王晓原,吴芳,朴基男.基于粗集理论的交通流丢失数据补齐方法[J].交通运输工程学报,2008(5):91-108. WANG Xiao-yuan, WU Fang, PIAO Ji-nan. Filling method of missing data for traffic flow based on rough set theory[J]. Journal of Traffic and Transportation Engineering, 2008(5):91-108.
[14] 郭敏,蓝金辉,李娟娟,等.基于灰色残差GM(1,N)模型的交通流数据恢复算法[J]. 交通运输系统工程与信息,2012,12(1):42-47. GUO Min, LAN Jin-hui, LI Juan-juan, et al. Traffic flow data recovery algorithm based on gray residual GM (1,N) model[J]. Journal of Transportation Systems Engineering and Information Technology, 2012,12(1):42-47.
[15] 陈淑燕,王炜,李文勇.实时交通数据的噪声识别和消噪方法[J].东南大学学报,2006,36(2):322-325. CHEN Shu-yan, WANG Wei, LI Wen-yong. Noise recognition and noise reduction of real-time traffic data[J]. Journal of Southeast University, 2006, 36(2):322-325.
[16] LI L. Spatiotemporal interpolation methods in GIS[M]. Lincoln:The University of Nebraska-Lincoln, 2003.
[17] LI L, ZHANG X, HOLT J. B, TIAN J, et al. Spatiotemporal interpolation methods for air pollution exposure[C]//Proceedings of the Ninth Symposium on Abstraction, Reformulation and Approximation.:, 2011:75-81.
[18] REVESZ P Z, LI Y. MLPQ:a linear constraint database system with aggregate operators[C]//Database Engineering and Applications Symposium 1997. IDEAS '97. Proceedings.:IEEE, 1997:132-137.
[19] 尹飞鸿.有限元法基本原理及应用[M].北京:高等教育出版社,2010.
[20] 尉桂兴.顾及时序平稳性的时空插值方法研究[D].南京:南京师范大学,2014. WEI Gui-xing. A spatio-temporal interpolation method based on the stationarity of time series[D]. Nanjing:Nanjing Normal University, 2014.
[21] 王凯,冯晅,刘财.Pearson相关系数法快慢横波波场分离[J].世界地质,2012,31(2):371-376. WANG Kai, FENG Xuan, LIU Cai. Wave filed separation of fast-slow shear waves by Pearson correlation coefficient method[J]. Global Geology, 2012, 31(2):371-376.
[22] SMITH B, CONKLIN J. Use of local lane distribution patterns to estimate missing data values from traffic monitoring systems[J]. Transportation Research Record, 2002, 1811(1):50-56.
[23] DAVIS G A, NIHAN N L. Using time-series designs to estimate changes in freeway level of service, despite missing data[J]. Transportation Research Part A:General, 1984, 18(5-6):431-438.

[1] ZHANG Shuai-chao, ZHU Yi, CHEN Xi-qun. Characteristic of macroscopic fundamental diagrams based on mobile sensing data[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1338-1344.
[2] LI Wen-jing, SUN Feng, LI Xi-yao, MA Dong-fang. Time-of-day breakpoints for traffic signal control using dynamic recurrence order clustering[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(6): 1150-1156.
[3] RUAN Shu-bin, WANG Fu-jian, MA Dong-fang, JIN Sheng, WANG Dian-hai. Vehicle trajectory extraction algorithm based on license plate recognition data[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(5): 836-844.
[4] MEI Zhen-yu, ZHANG Wei. Dynamicsanalysis of parking space occupancy series based oncomplexity measurement[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(4): 727-734.
[5] GONG Yue, LUO Xiao-Qin, WANG Dian-hai, YANG Shao-hui. Urban travel time prediction based on gradient boosting regression tress[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(3): 453-460.
[6] QU Zhao-wei, LUO Rui-qi, CHEN Yong-heng, CAO Ning-bo, DENG Xiao-lei, WANG Kun-wei. Characteristics of right-turning vehicle trajectories at signalized intersection[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(2): 341-351.
[7] CAO Ning-bo, CHEN Yong-heng, QU Zhao-wei, ZHAO Li-ying, BAI Qiao-wen, YANG Qiu-jie. Pedestrian route choice model based on social force model[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(2): 352-357.
[8] YANG Qing-fang, ZHAO Xiao-hui, ZHENG Li-li, ZHANG Wei. Signal timing method for roundabouts based on model predictive control[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(1): 117-124.
[9] YANG Fang-yi, LI Tie-zhu. Traffic characteristics and capacities of passenger drop-off area at large intermodal transportation terminals[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(11): 2207-2214.
[10] WU Jiang-ling, ZHANG Sheng-rui, SINGH Amit Kumar, QIN Si, SUN Zhen-dong. Semi-parametric survival analysis of mandatory lane changing duration on freeways[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(11): 2215-2221.
[11] YU De-xin, TIAN Xiu-juan, YANG Zhao-sheng, ZHOU Xi-yang, CHENG Ze-yang. Improved arterial coordinated signal control optimization model[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(10): 2019-2029.
[12] JI Xue-bin, WANG Hui, SONG Chun-yue. Traffic flow modeling and safety analysis in hydropower construction based on cellular automata[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(10): 2005-2011.
[13] LI Xian-sheng, MENG Fan-song, ZHENG Xue-lian, REN Yuan-yuan, YAN Jia-hui. Influence of traffic conflict types on driver's physiological characteristics[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(9): 1720-1726.
[14] SHANG Qiang, LIN Ci-yun, YANG Zhao-sheng, BING Qi-chun, XING Ru-ru. Traffic incident detection based on variable selection and kernel extreme learning machine[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(7): 1339-1346.
[15] LIU Mei-qi, SHEN Li-xiao, JIN Sheng. Modeling capacity of shared right-turn lanes considering right turn on red and lag green time of right-turn[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(7): 1347-1354.