Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (5): 1021-1029    DOI: 10.3785/j.issn.1008-973X.2023.05.018
Design of sampler and associated transfer device of interface between sediment and overlying water
Jin GUO(),Jia-wang CHEN*(),Hao WANG,Ying WANG,Wei WANG,Yu-ping FANG,Peng ZHOU
Ocean College, Zhejiang University, Zhoushan 316021, China
Download: HTML     PDF(8017KB) HTML
Export: BibTeX | EndNote (RIS)      


A 3000 m-class sediment including overlying water pressure-retaining sampler based on heavy-duty remote operated vehicle (ROV) robotic operation and transfer derice matched with the sampler were proposed aiming at the calculation of the leakage flux in the methane leakage area, sample gas composition loss, microbial mortality and organic component decomposition caused by non-pressure-retaining non-gas-tight sampling device. The sampler could achieve low disturbance in the situ packaging of samples. The transfer device realized the separation of overlying water and the transfer of sediment to different incubators under the pressure-retaining condition. The pressure-retaining transfer device transferred the overlying water by compressing the internal volume and transferred the sediment by secondary sampling based on the threshold pressure adjustable relief valve. The results showed that the sampler obtained more than 700 mL pressure-retaining samples in each of the three sea trials in the South China Sea and the pressure drop of sampler was only 1.53 MPa in the 3 000 m sea trial. The sampling rate and the pressure retaining capacity of the sampler were verified in the sea trial. The transfer device completed the transfer of sediment and overlying water separation under 30 MPa high pressure conditions and kept the pressure fluctuation not more than 4.8% during the transfer process. The pressure in the culture kettle decreased only 4.7% relative to the pressure in the sampler after the transfer was completed.

Key wordsmethane leakage      sediment      overlying water      pressure-retaining sampling      pressure-retaining transferring      sea trial     
Received: 08 October 2022      Published: 09 May 2023
CLC:  P 754  
Fund:  国家自然科学基金资助项目(42276191); 海南省财政科技计划资助项目(ZDKJ202019)
Corresponding Authors: Jia-wang CHEN     E-mail:;
Cite this article:

Jin GUO,Jia-wang CHEN,Hao WANG,Ying WANG,Wei WANG,Yu-ping FANG,Peng ZHOU. Design of sampler and associated transfer device of interface between sediment and overlying water. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 1021-1029.

URL:     OR


针对甲烷渗漏区渗漏通量的计算、非保压非气密取样设备导致的样品气体散失、微生物死亡和有机成分分解等问题,设计一种基于重载遥控无人潜水器(ROV)机械手操作的3 000 m级沉积物含上覆水保压取样器,以及与取样器配套的保压分离转移装置. 该取样器可以实现样品的低扰动原位封装. 在保压的工况下,转移装置可以实现上覆水的分离以及沉积物至不同培养釜的转移. 基于阈值压力可调的泄压阀,保压转移装置通过压缩内部体积转移上覆水和通过二次取样转移沉积物. 结果表明:取样器在南海的3次海试中分别获得了超过700 mL的保压样品,在3 000 m的海试中2 h压降仅为1.53 MPa,海试验证了取样器的取样率及保压能力. 在30 MPa高压工况下,转移装置完成了沉积物及上覆水分离转移,在转移过程中保持压力波动不超过4.8%. 在转移完成后,培养釜中样品的压力相对于取样器中的样品初始压力下降仅为4.7%.

关键词: 甲烷渗漏,  沉积物,  上覆海水,  保压取样,  保压转移,  海试 
Fig.1 Overall structure diagram of sampler
参数 取值
尺寸/mm 530×350×650
质量/kg 30
工作深度/m 3 000
取样直径/mm 56
取样体积/mL ≥600
Tab.1 Basic parameters of sampling device
参数 符号 取值
屈服强度/MPa $ {\mathrm{\sigma }}_{\mathrm{s}} $ 725
拉伸强度/MPa $ {\sigma }_{\mathrm{b}} $ 930
安全因子 $ n $ 2.5
许用应力/MPa ? 290
Tab.2 Mechanical parameters of stainless steel (17-4PH)
Fig.2 Pressure retaining separation and transfer device of sediment and overlying water
Fig.3 Section view of push transfer system
Fig.4 Section view of sediment culture system
Fig.5 Diagram of working principle
Fig.6 Model after matching sampler and transfer system
Fig.7 Schematic diagram of transferring sediment to culture kettle
Fig.8 Sea trial of sediment overlying water interface sampler
Fig.9 Seafloor sampling process based on manipulator
Fig.10 Samples of sediment, overlying water and dissolved gas obtained by sampler on seafloor
Fig.11 Pressure drops of sampler within two hours after sampling in three stations
Fig.12 Performance test of sediment overlying water pressure retaining transfer device       
Fig.13 Pressure fluctuation of transfer device during sample transfer
Fig.14 Transfer results of sediment and overlying water samples
[14]   KAWASAKI M, UMEZU S, YASUDA M Pressure temperature core sampler (PTCS)[J]. Journal of the Japanese Association for Petroleum Technology, 2006, 71 (1): 139- 147
doi: 10.3720/japt.71.139
[15]   SCHULTHEISS P, HOLLAND M, HUMPHREY G Wireline coring and analysis under pressure: recent use and future developments of the HYACINTH system[J]. Scientific Drilling, 2009, 7: 44- 50
doi: 10.5194/sd-7-44-2009
[16]   HAO Z B, HUANG W Q, QIN J X, et al Estimation technique for gas hydrate saturation of pressure core samples[J]. Chinese Journal of Geophysics, 2013, 56 (11): 3917- 3921
[17]   SCHULTHEISS P J, FRANCIS T J G, HOLLAND M, et al Pressure coring, logging and subsampling with the HYACINTH system[J]. Geological Society, London, Special Publications, 2006, 267 (1): 151- 163
doi: 10.1144/GSL.SP.2006.267.01.11
[18]   MATSUMOTO R, RYU B J, LEE S R, et al Occurrence and exploration of gas hydrate in the marginal seas and continental margin of the Asia and Oceania region[J]. Marine and Petroleum Geology, 2011, 28 (10): 1751- 1767
doi: 10.1016/j.marpetgeo.2011.09.009
[19]   ZHU H, CHEN J W, REN Z Q, et al A new technique for high-fidelity cutting technology for hydrate samples[J]. Journal of Zhejiang University: Science A, 2022, 23 (1): 40- 54
doi: 10.1631/jzus.A2100188
[20]   ZHANG P, CHEN J, GAO Q, et al Research on a temperature control device for seawater hydraulic systems based on a natural gas hydrate core sample pressure-retaining and transfer device[J]. Energies, 2019, 12 (20): 3990- 4010
doi: 10.3390/en12203990
[21]   CHEN J W, GAO Q L, LIU H H, et al Development of a pressure-retained transfer system of seafloor natural gas hydrates[J]. Environmental Geotechnics, 2019, 8 (8): 529- 538
[22]   SCHULTHEISS P J, WEAVER P P E. Multi sensor core logging for science and industry [C]// Oceans 92 Proceedings M Mastering the Oceans Through Technology: 2. IEEE. Newport RI: IEEE, 1992: 608-613.
[23]   DICKENS G R, SCHROEDER D, HINRICHS K U. The pressure core sampler (PCS) on ODP leg 201: general operations and gas release [C]// Proceedings of the Ocean Drilling Program, Initial Reports: 201 Ocean Drilling Program College Station. Falkland Islands, TX: [s.n.], 2003: 1-22.
[24]   PRIEST J A, HAYLEY J L, SMITH W E, et al PCATS triaxial testing: geomechanical properties of sediments from pressure cores recovered from the Bay of Bengal during expedition NGHP-02[J]. Marine and Petroleum Geology, 2019, 108: 424- 438
doi: 10.1016/j.marpetgeo.2018.07.005
[25]   LIU J, CHEN J, LIU F, et al. Development of one pressure core transfer device for one long gravity-piston pressure retained corer [C]// 2014 Oceans-St. John’s. IEEE. St. John's, NL: IEEE, 2014: 1-6.
[26]   GUO J, WANG Y, WANG W, et al. Pressure-retaining sampler for sediment including overlying water based on heavy duty ROV-Jellyfish [J/OL]. Applied Ocean Research, 2022, 128: 103354.
[1]   GORNITZ V, FUNG I Potential distribution of methane hydrates in the world’s oceans[J]. Global Biogeochemical Cycles, 1994, 8 (3): 335- 347
doi: 10.1029/94GB00766
[2]   SUESS E, TORRES M E, BOHRMANN G Gas hydrate destabilization: enhanced dewatering, benthic material turnover and large methane plumes at the Cascadia convergent margin[J]. Earth and Planetary Science Letters, 1999, 170 (1-2): 1- 15
doi: 10.1016/S0012-821X(99)00092-8
[3]   ROBERTS H H, AHARON P Hydrocarbon-derived carbonate buildups of the northern gulf of Mexico continental slope: a review of submersible investigations[J]. Geo-Marine Letters, 1994, 14 (2-3): 135- 148
[4]   DENG Y, CHEN F, GUO Q Possible links between methane seepages and glacial-interglacial transitions in the South China Sea[J]. Geophysical Research Letters, 2021, 48 (8): 1- 10
[5]   DENG Y, CHEN F, HU Y. Methane seepage patterns during the middle Pleistocene inferred from molybdenum enrichments of seep carbonates in the South China Sea [J]. Ore Geology Reviews, 2020, 125: 103701.
[6]   HE S, PENG Y, JIN Y Review and analysis of key techniques in marine sediment sampling[J]. Chinese Journal of Mechanical Engineering (English Edition), 2020, 33 (1): 66- 83
doi: 10.1186/s10033-020-00480-0
[7]   TRÉHU A M Gas hydrates in marine sediments: lessons from scientific ocean drilling[J]. Oceanography, 2006, 19: 124- 142
doi: 10.5670/oceanog.2006.11
[8]   ZHU H, LIU Q, DENG J Pressure and temperature preservation techniques for gas-hydrate-bearing sediments sampling[J]. Energy, 2011, 36 (7): 4542- 4551
doi: 10.1016/
[9]   JUTZELER M, WHITE J D L, TALLING P J Coring disturbances in IODP piston cores with implications for offshore record of volcanic events and the Missoula megafloods[J]. Geochemistry, Geophysics, Geosystems, 2014, 15 (9): 3572- 3590
doi: 10.1002/2014GC005447
[10]   CHEN J W, FAN W, BINGHAM B A long gravity-piston corer developed for seafloor gas hydrate coring utilizing an in situ pressure-retained method[J]. Energies, 2013, 6 (7): 3353- 3372
doi: 10.3390/en6073353
[11]   CHEN J, HUANG Y, LIN Y, et al A novel sediment pressure sampling device carried by a hadal-rated lander[J]. Journal of Marine Science and Engineering, 2020, 8 (11): 839
doi: 10.3390/jmse8110839
[12]   WANG H, RUAN D R, CAO C, et al Collection sediment from Mariana trench with a novel pressure-retaining sampler[J]. Deep Sea Research Part I:Oceanographic Research Papers, 2022, 183: 103740
doi: 10.1016/j.dsr.2022.103740
[13]   ZHU H Y, LIU Q Y, WONG G R, et al A pressure and temperature preservation system for gas-hydrate-bearing sediments sampler[J]. Petroleum Science and Technology, 2013, 31 (6): 652- 662
doi: 10.1080/10916466.2010.531352
[27]   WANG S, WU S, YANG C. The pressure compensation technology of deep-sea sampling based on the real gas state equation [J]. Acta Oceanologica Sinica, 2020, 39(8): 88-95.
[28]   王林 皮囊式蓄能器的选用体会[J]. 液压气动与密封, 2009, 2009 (6): 49- 50
WANG Lin Selection experience of bag accumulator[J]. Hydropneumatic and Sealing, 2009, 2009 (6): 49- 50
[29]   ABID K, SPAGNOLI G, TEODORIU C, et al Review of pressure coring systems for offshore gas hydrates research[J]. Underwater Technology, 2015, 33 (1): 19- 30
doi: 10.3723/ut.33.019
[30]   PEOPLES L M, NORENBERG M, PRICE D, et al A full-ocean-depth rated modular lander and pressure-retaining sampler capable of collecting hadal-endemic microbes under in situ conditions[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2019, 143: 50- 57
doi: 10.1016/j.dsr.2018.11.010
[31]   TABOR P S, DEMING J W, OHWADA K, et al A pressure-retaining deep ocean sampler and transfer system for measurement of microbial activity in the deep sea[J]. Microbial Ecology, 1981, 7 (1): 51- 65
doi: 10.1007/BF02010478
[1] Hao WANG,Jia-wang CHEN,Jin GUO,Pei-hao ZHANG,Ying WANG,Peng ZHOU,Yu-ping FANG. Design and experimental research on full-sea depth pressure-retaining sampling device for macro organism[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 2077-2083.
[2] Hui WANG, Xiao-lin HUAN, Yu-qi CHEN, Bo ZHOU, Shi-feng XUE, Ying-song LIN. Macro-mesoscopic Duncan-Chang damage model for hydrate-bearing sediments considering coupling effect of temperature-pore pressure condition[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1734-1743.
[3] Peng HU,Shao-yi DENG,Zi-xiong ZHAO,Zhi-xian CAO,Huai-han LIU,Zhi-guo HE. Hydro-sediment-morphodynamic modeling of riverbed evolution and calculation of dredging volume[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 733-741.
[4] Zhi-lin SUN,Jia-yun ZHENG,Li-li ZHU,Lin CHONG,Jun LIU,Ju-yuan LUO. Influence of submerged vegetation on flow structure and sediment deposition[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 71-80.
[5] Dong-xing WANG,Lin-feng WU,Yi-kai TANG,Xue-yong XU. Mud-water separation process and performance evaluation of waste slurry from construction engineering[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1049-1057.
[6] Guo-rong HUANG,Xiao-yu ZHANG,Ya-chao HAN,Jia-xing CHEN,Yong-jun ZHANG. Observation of suspended sediment in sea area around Dajin Island based on multi-source remote sensing data[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 985-995.
[7] Zhi-lin SUN,Zhen-yu CHEN,Zheng-zhi DENG,Yu-yu DAI,Dan XU. Relation between sediment mass flux and volume runoff under natural condition of Lancang River[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 932-939.
[8] Peng HU,Jian-jian HAN,Yun-long LEI. Coupled modeling of sediment-laden flows based on local-time-step approach[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 743-752.
[9] JIAO Jian-ge, HUANG Sen-jun, ZHENG Hao-lei, SUN Zhi-lin. Influence and correction of suspended sediment concentration on salinity measurement[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(9): 1644-1650.
[10] LIANG Xiao-long, QIAO Wen-li, ZHAO Xi-zeng. Direct numerical simulation of gravity current with stratified water environment[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 996-1001.
[11] CHEN Xing-yu, HUANG Shan-he, He Hao-zhe. Measurement error due to frequency selection in multi-frequency suspended sediment measurement system[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(2): 307-316.
[12] GUO Cong, SUN Zhi lin, ZHENG Hao lei, PAN Gui e. Response of estuarine erosion and deposition to reclamation in estuary[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(9): 1791-1797.
[13] ZHENG Jian,LI Yu chao,CHEN Yun min. Centrifuge test modeling of impact of sediment consolidation on contaminant transportation[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(1): 8-15.
[14] DU Yong, ZHANG Xiao-yu,HUANG Da-song, JIANG Bin-bin, CHEN Jian-yu,DENG Han,YAO Ling-ling, YANGDing-tian. Evaluation of fusion methods for Worldview-2 aiming to water body observation[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(5): 993-1000.
[15] SUN Zhi-lin, NI Xiao-jing, XU Dan, NIE Hui. Some problems on mathematical model of sediment transport in Estuary[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(2): 232-237.