Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (10): 2077-2083    DOI: 10.3785/j.issn.1008-973X.2022.10.019
    
Design and experimental research on full-sea depth pressure-retaining sampling device for macro organism
Hao WANG(),Jia-wang CHEN*(),Jin GUO,Pei-hao ZHANG,Ying WANG,Peng ZHOU,Yu-ping FANG
Ocean College, Zhengjiang University, Zhoushan 316000, China
Download: HTML     PDF(1464KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A pressure-retaining sampler was proposed aiming at the problem that it is difficult to obtain high-quality samples by non-isobaric sampling methods. A hollow piston sampling structure was proposed considering the limitation of deployment weight. The non-adaptability of the ideal gas state equation which is used to design accumulators in engineering applications was analyzed for the ultra-high pressure environment in the deep sea, and a design method based on the real gas state was proposed. A liquid active compensation technique was designed for the pressure drop caused by the seal movement. The internal pressure test results show that the pressure vessel and the piston have sufficient strength and good sealing. The high-pressure chamber test shows that the proposed sampling system can work stably under high pressure, and the designed pressure compensation system can significantly improve the pressure retention performance of the sampler. The developed sampler captured 174 amphipods in the Marianas Trench at depths of more than 10 800 m.



Key wordshadal trench      pressure-retaining sampling      pressure compensation      active pressurization      high-pressure chamber test     
Received: 11 November 2021      Published: 25 October 2022
CLC:  P 754  
Fund:  国家重点研发计划资助项目(2018YFC0310600,2017YFC0306500)
Corresponding Authors: Jia-wang CHEN     E-mail: 12134002@zju.edu.cn;arwang@zju.edu.cn
Cite this article:

Hao WANG,Jia-wang CHEN,Jin GUO,Pei-hao ZHANG,Ying WANG,Peng ZHOU,Yu-ping FANG. Design and experimental research on full-sea depth pressure-retaining sampling device for macro organism. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 2077-2083.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.10.019     OR     https://www.zjujournals.com/eng/Y2022/V56/I10/2077


全海深宏生物保压取样装置设计与实验研究

针对非保压取样方法难以获取高质量生物样本的问题,提出全海深宏生物保压取样器. 考虑海上布放对装置质量的限制,提出中空式活塞取样结构. 针对深海的超高压环境,分析常规蓄能器设计中理想气体状态方程的不适应性,提出基于真实气体状态的设计方法. 针对密封圈移动引起的压降,设计液体主动补偿技术. 内压试验结果表明,保压筒和取样活塞具有足够的强度和良好的密封性. 高压舱测试表明,提出的取样系统在高压下可以稳定工作,设计的压力补偿系统能够显著地提高取样器的保压性能. 取样器在马里亚纳海沟深度超过10 800 m深度时进行2次原位实验,共获取端足类生物保压样品174只.


关键词: 深渊,  保压取样,  压力补偿,  主动增压,  高压舱测试 
Fig.1 Overall structure of full-sea depth pressure-retaining sampler for macro organism
Fig.2 Detailed structure of sampler
Fig.3 Function of control system
参数 符号 取值
海底压力/MPa p 110
保压筒内径/m di 0.08
保压筒外径/m do 0.124
保压筒长度/m l 0.35
保压筒材料弹性模量/MPa E 110
保压筒材料泊松比 μ 0.3
海水弹性模量(120 MPa,4 ℃)/GPa K 2.04
保压筒内周长/m C 0.251
保压筒材料线膨胀系数/K?1 α 1.8×10?5
海底温度/K T1 275.15
海面温度/K T2 298.15
Tab.1 Parameters and values for calculation of pressure drop of pressure vessel
Fig.4 Available fluid volume of accumulator
Fig.5 Volume required for accumulator
Fig.6 Movement of sealing ring causes pressure to drop
Fig.7 Liquid pressure compensation device
Fig.8 Internal pressure test of pressure-retaining cylinder
Fig.9 Hyperbaric chamber test of pressure-retaining sampler for full-sea depth macro organisms
序号 pt/MPa pr/MPa β/%
1 60.15 54.67 90.8
2 60.15 54.35 90.3
3 60.15 58.61 97.4
Tab.2 Results of hyperbaric chamber test
Fig.10 Sea trial of pressure-retaining sampler for full-sea depth macro organisms
[1]   ALAN J J, TOYONOBU F, DANIEL J M, et al Hadal trenches: the ecology of the deepest places on Earth[J]. Trends in Ecology and Evolution, 2009, 25 (3): 190- 197
[2]   MIN L, RONNIE N G, BINBIN P, et al Benthic carbon mineralization in hadal trenches: insights from in situ determination of benthic oxygen consumption[J]. Geophysical Research Letters, 2018, 45 (6): 2752- 2760
doi: 10.1002/2017GL076232
[3]   HEATHER A S, ALAN J J Habitat heterogeneity of hadal trenches: considerations and implications for future studies[J]. Progress in Oceanography, 2018, 161: 47- 65
doi: 10.1016/j.pocean.2018.01.007
[4]   PEOPLES L M, GRAMMATOPOULOU E, POMBROL M, et al Microbial community diversity within sediments from two geographically separated hadal trenches[J]. Frontiers in microbiology, 2019, 10: 347- 357
doi: 10.3389/fmicb.2019.00347
[5]   GLUD R N, BERG P, THAMDRUP B, et al Hadal trenches are dynamic hotspots for early diagenesis in the deep sea[J]. Communications Earth and Environment, 2021, 2 (1): 1- 8
doi: 10.1038/s43247-020-00077-4
[6]   CHEN M, SONG Y, FENG X, et al Genomic characteristics and potential metabolic adaptations of hadal trench Roseobacter and Alteromonas bacteria based on single-cell genomics analyses[J]. Frontiers in Microbiology, 2020, 11: 1739- 1745
doi: 10.3389/fmicb.2020.01739
[7]   WENZHöFER F, OGURI K, MIDDELBOE K, et al Benthic carbon mineralization in hadal trenches: Assessment by in situ O2 microprofile measurements [J]. Deep-Sea Research Part I, 2016, 116: 276- 286
doi: 10.1016/j.dsr.2016.08.013
[8]   BROWN D M Four biological samplers: opening-closing midwater trawl, closing vertical tow net, pressure fish trap, free vehicle drop camera[J]. Deep Sea Research and Oceanographic Abstracts, 1975, 22 (8): 565- 567
doi: 10.1016/0011-7471(75)90037-6
[9]   MACDONALD A G, GILCHRIST I Further studies on the pressure tolerance of deep-sea crustacea, with observations using a new high-pressure trap[J]. Marine Biology, 1978, 45 (1): 9- 21
doi: 10.1007/BF00388973
[10]   YAYANOS A A Recovery and maintenance of live amphipods at a pressure of 580 bars from an ocean depth of 5700 meters[J]. Science, 1978, 200 (4345): 1056- 1059
doi: 10.1126/science.200.4345.1056
[11]   YAYANOS A A Recovery of live amphipods at over 102 MPa from the challenger deep[J]. Marine Technology Society Journal, 2009, 43 (5): 132- 136
doi: 10.4031/MTSJ.43.5.20
[12]   SUMIHIRO K, TETSUYA M, MASAE H, et al Pressure-stat aquarium system designed for capturing and maintaining deep-sea organisms[J]. Deep-Sea Research Part I, 2002, 49 (11): 2095- 2102
doi: 10.1016/S0967-0637(02)00098-5
[13]   JEFFREY C D, LARRY E B, JAMES P B Development of a hyperbaric trap-respirometer for the capture and maintenance of live deep-sea organisms[J]. Limnology and Oceanography: Methods, 2005, 3 (11): 488- 498
doi: 10.4319/lom.2005.3.488
[14]   葛朝平. 深海近底层多网分段/分层生物幼体保压取样器研究[D]. 杭州: 浙江大学, 2008.
GE Chao-ping. Research on near the bottom of deepsea biological larva pressure-retained sampler of multiple nets subsection/layered [D]. Hangzhou: Zhejiang University, 2008.
[15]   WANG H, CHEN J, WANG Y, et al Research and analysis of pressure-maintaining trapping instrument for macro-organisms in hadal trenches[J]. Journal of Marine Science and Engineering, 2020, 8 (8): 596- 610
doi: 10.3390/jmse8080596
[16]   安莉. 新型天然气水合物保真筒保压特性研究[D]. 杭州: 浙江大学, 2014.
AN Li. Research on pressure-holding characteristics of a new deep-water fidelity canister [D]. Hangzhou: Zhejiang University, 2014.
[17]   WANG S, WU S, YANG C The pressure compensation technology of deep-sea sampling based on the real gas state equation[J]. Acta Oceanologica Sinica, 2020, 39 (8): 88- 95
doi: 10.1007/s13131-020-1637-6
[1] XU Bing, CHENG Min, YANG Hua yong, ZHANG Jun hui. Electrohydraulic flow matching system with bypass pressure compensation[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(9): 1762-1767.