Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (6): 1241-1248    DOI: 10.3785/j.issn.1008-973X.2022.06.023
Free-flow travel time estimation in urban roads based on data sampling method
Yi YU(),Jia-qi ZENG,Dian-hai WANG*()
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(1667KB) HTML
Export: BibTeX | EndNote (RIS)      


Based on traffic wave theory, free-flow travel time in urban areas was estimated using plate recognition data. The proposed method was accurate, scientific and practical with no need for additional detectors or on-site calculations. With the hypophysis of uniform arrival, travel time was divided into free-flow travel time and delay, and a travel time distribution function was constructed in the traffic signal environment. To solve the non-uniform arrival problem in urban traffic, a data resampling method was proposed to generate travel time data that obey the uniform flow assumption. By fitting the travel time distribution function, the free-flow travel time was estimated. The approach was verified in Hangzhou, China. Results showed that the travel time data after resampling fits the travel time distribution model well. The estimated free-flow travel time is accurate and has fully theoretical support.

Key wordsfree-flow travel time      travel time distribution      data resampling      urban segment     
Received: 06 July 2021      Published: 30 June 2022
CLC:  U 491  
Fund:  国家自然科学基金资助项目(52131202, 61773338, 52072340);山东省重大科技创新工程项目(2019TSLH0203)
Corresponding Authors: Dian-hai WANG     E-mail:;
Cite this article:

Yi YU,Jia-qi ZENG,Dian-hai WANG. Free-flow travel time estimation in urban roads based on data sampling method. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1241-1248.

URL:     OR


基于交通波模型,提出利用车牌识别数据估计城市道路自由流行程时间. 无需额外架设检测器或现场测算,所提方法具备准确性、科学性、实用性的特点. 基于车辆均匀到达的假设,将行程时间分为自由流行程时间和延误,建立信号影响下的路段行程时间分布函数. 针对现实环境中车流非均匀到达的特点,提出数据重采样方法生成符合均匀流假设的行程时间数据;拟合行程时间分布函数以获得路段自由流行程时间. 在杭州市多个路段的数据验证结果表明,重采样后的行程时间数据较好地拟合了行程时间分布模型,估得的自由流行程时间准确且具备理论支撑.

关键词: 自由流行程时间,  行程时间分布,  数据重采样,  城市道路 
Fig.1 Vehicles’ trajectories in unsaturated condition
Fig.2 Probability density function of travel time in unsaturated condition
Fig.3 Layout of automatic number plate recognition system
Fig.4 Accumulated arrival and release of vehicles in data sampling process
Fig.5 Influence of free flow travel time value on resampling
Fig.6 Data collection location of selected links
路段编号 L/m C up/s C/s R/s N
1 353 120 120 70 2886
2 382 100 100 60 2470
3 539 120 100 60 2056
4 542 100 120 70 176
Tab.1 Data description of traffic control parameters and ANPR data of selected links
Fig.7 Resampling process and results of travel time data in link 1
路段编号 y/s K-S p 路段编号 y/s K-S p
1 26.0 0.84 3 40.5 0.83
2 27.6 0.06 4 40.3 0.33
Tab.2 Fitting results of free-flow travel time
Fig.8 Original travel time distribution of 4 links
Fig.9 Fitting results of travel time distribution
y f
方法1) 方法2) 方法3) 本研究
1 36.71 24.5 28.41 26.59
2 33.93 24.33 28.29 28.54
3 64.34 41.29 50.15 41.70
4 59.97 40.29 44.59 40.12
Tab.3 Comparison of free-flow travel time results s
Fig.10 Comparison of free-flow speed results
[1]   Transportation Research Board of the National Academies. HCM 2010: highway capacity manual [M]. Washington, D.C.: Transportation Research Board, 2010: 305-306.
[2]   臧晓冬 城市快速路互通立交环形匝道自由流速度研究[J]. 广州大学学报:自然科学版, 2010, 9 (5): 32- 34
ZANG Xiao-dong Study on free speed of ring ramp on interchange of urban expressway[J]. Journal of Guangzhou University: Natural Science Edition, 2010, 9 (5): 32- 34
[3]   HOFLEITNER A, BAYEN A. Optimal decomposition of travel times measured by probe vehicles using a statistical traffic flow model [C]// 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC). Washington, DC: IEEE, 2011: 815–821.
[4]   LUO X, MA D, JIN S, et al. Queue length estimation for signalized intersections using license plate recognition data[J]. IEEE Intelligent Transportation Systems Magazine, 2019, 11 (3): 209- 220
doi: 10.1109/MITS.2019.2919541
[5]   MA D, LUO X, JIN S, et al. Lane-based saturation degree estimation for signalized intersections using travel time data[J]. IEEE Intelligent Transportation Systems Magazine, 2017, 9 (3): 136- 148
doi: 10.1109/MITS.2017.2709881
[6]   PAN Y, WANG D, DONG Y, et al. A novel vision-based framework for identifying dynamic vehicle loads on long-span bridges: a case study of Jiangyin bridge, China[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 1- 17
[7]   中华人民共和国交通运输部. 城市交通运行状况评价规范: GB/T 33171—2016[S]. 北京: [s.n.], 2016.
[8]   陈喜群, 刘教坤, 胡浩强, 等 网络行程时间可靠性评价方法与影响因素[J]. 交通运输工程学报, 2018, 18 (4): 132- 142
CHEN Xi-qun, LIU Jiao-kun, HU Hao-qiang, et al. Evaluation method and influence factors of network travel time reliability[J]. Journal of Traffic and Transportation Engineering, 2018, 18 (4): 132- 142
doi: 10.3969/j.issn.1671-1637.2018.04.014
[9]   MA Z, FERREIRA L, MESBAH M, et al. Modeling distributions of travel time variability for bus operations[J]. Journal of Advanced Transportation, 2016, 50: 6- 24
doi: 10.1002/atr.1314
[10]   HUSSEIN F F, NAIK B, SÜER G A. Analyzing distributions of free-flow speed on urban and rural roads [C]// International Conference on Transportation and Development 2021. [S.l.]: ASCE, 2021: 84–96.
[11]   SRINIVASAN K K, PRAKASH A A, SESHADRI R Finding most reliable paths on networks with correlated and shifted log–normal travel times[J]. Transportation Research Part B: Methodological, 2014, 66: 110- 128
doi: 10.1016/j.trb.2013.10.011
[12]   MAZLOUMI E, CURRIE G, ROSE G Using GPS data to gain insight into public transport travel time variability[J]. Journal of Transportation Engineering, 2010, 136 (7): 623- 631
doi: 10.1061/(ASCE)TE.1943-5436.0000126
[13]   HOFLEITNER A, HERRING R, BAYEN A Arterial travel time forecast with streaming data: a hybrid approach of flow modeling and machine learning[J]. Transportation Research Part B: Methodological, 2012, 46 (9): 1097- 1122
doi: 10.1016/j.trb.2012.03.006
[14]   DELHOME R, BILLOT R, FAOUZI N-E E Travel time statistical modeling with the Halphen distribution family[J]. Journal of Intelligent Transportation Systems, 2017, 21 (6): 452- 464
doi: 10.1080/15472450.2017.1326115
[15]   LOW V J M, KHOO H L, KHOO W C. Quantifying bus travel time variability and identifying spatial and temporal factors using Burr distribution model [J/OL]. International Journal of Transportation Science and Technology, 2021. [2021-07-24].
[16]   YANG Q, WU G, BORIBOONSOMSIN K, et al. A novel arterial travel time distribution estimation model and its application to energy/emissions estimation[J]. Journal of Intelligent Transportation Systems, 2018, 22 (4): 325- 337
doi: 10.1080/15472450.2017.1365606
[17]   OLSZEWSKI P S Modeling probability distribution of delay at signalized intersections[J]. Journal of Advanced Transportation, 1994, 28 (3): 253- 274
doi: 10.1002/atr.5670280306
[18]   HORVÁTH M, TETTAMANTI T Real-time queue length estimation applying shockwave theory at urban signalized intersections[J]. Periodica Polytechnica Civil Engineering, 2021, 181: 109581
[19]   GAO Y, QU Z, SONG X, et al. A novel relationship model between signal timing, queue length and travel speed[J]. Physica A: Statistical Mechanics and its Applications, 2021, 583: 126331
doi: 10.1016/j.physa.2021.126331
[20]   CHEN P, LIU H, QI H, et al. Analysis of delay variability at isolated signalized intersections[J]. Journal of Zhejiang University-Science A, 2013, 14 (10): 691- 704
doi: 10.1631/jzus.A1300208
[21]   GUESSOUS Y, ARON M, BHOURI N, et al. Estimating travel time distribution under different traffic conditions[J]. Transportation Research Procedia, 2014, 3: 339- 348
doi: 10.1016/j.trpro.2014.10.014
[22]   HOFLEITNER A, HERRING R, BAYEN A M. A hydrodynamic theory based statistical model of arterial traffic [R]. Berkeley: California Center for Innovative Transportation, 2011.
[23]   DICKSON L E. Algebraic Invarients [M]. [S.l.]: Wiley, 1914.
[1] Jia-jie YU,Yan-jie JI,Qing BU,Yue-biao ZHENG. Partitioned green-wave control scheme for long arterial considering breakpoint cost[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 640-648.
[2] Gen LI,Wei ZHAI,Lan WU. Study of merging interactions based on gradient boosting decision tree[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 649-655.
[3] Yong-heng CHEN,Chang-jian WU,Qiao-wen BAI,Shuai XIONG,Wan-ning LI,Hao-nan LI. Traffic characteristics and safety analysis of expressway off-ramp junction[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 379-387.
[4] Ning-bo CAO,Li-ying ZHAO. Decision-making method of autonomous vehicles for right of way on road segments[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 118-127.
[5] Nan ZHANG,Hong-zhao DONG,Yi-ni SHE. Seq2Seq prediction of bus trajectory on exclusive bus lanes[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1482-1489.
[6] Fei WANG,Wei-xiang XU. Improved model of road impedance function based on LSTM neural network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1065-1071.
[7] Chen-xin ZHAO,Hong-zhao DONG,Wei-na HAO. Setting condition and traffic critical model of bus lane with time-division multiplexing[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 704-712.
[8] Qi ZHANG,Hong CHEN,Ji-biao ZHOU,Min ZHANG,Lin GUO,Ren-fa YANG. Effect of roadway access on traffic safety at adjacent intersection[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 720-726.
[9] Zhong-yu WANG,Ling WANG,Yan-li WANG,Bing WU. Traffic congestion prevention method during large-scale special events based on variable network topology optimization[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 358-366.
[10] Xi-ran ZHANG,Shao-kuan CHEN,Bo WANG,Shuang LIU,Zhuo WANG. Emergency allocation optimization model considering reliability of replaceable rescue[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 20-30.
[11] Jia-qi ZENG,Dian-hai WANG. Improved numerical method for two-way arterial signal coordinate control[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2386-2394.
[12] Xin-wei MA,Yan-jie JI,Xue JIN,Yang XU,Rui-ming CAO. Analysis on travel characteristics of bike-sharing users and influence factors on way to travel[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1202-1209.
[13] Kai LU,Xin TIAN,Guan-rong LIN,Xing-dong DENG. Simultaneous optimization model of signal phase design and timing at intersection[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 921-930.
[14] Wen-tao ZHU,Guo-min QIAN,Dong-fang MA,Dian-hai WANG. Bus delay model considering influence of stop at upstream of intersection[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 796-803.
[15] Chao SUN,Meng-hui LI,Fei HAN. Traffic evolution model with multi-source data of intelligent highway[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 546-556.