Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (7): 1373-1384    DOI: 10.3785/j.issn.1008-973X.2025.07.005
土木与交通工程     
城市网约车与巡游出租车动态博弈及碳排放效应研究
矫金池1(),孙健2,*(),倪训友3
1. 长安大学 运输工程学院,陕西 西安 710064
2. 长安大学 未来交通学院,陕西 西安 710064
3. 华东交通大学 交通运输工程学院,江西 南昌 330013
Dynamic game and carbon emission effects between urban ride-sourcing and cruise taxis
Jinchi JIAO1(),Jian SUN2,*(),Xunyou NI3
1. School of Transportation Engineering, Chang’an University, Xi’an 710064, China
2. School of Future Transportation, Chang’an University, Xi’an 710064, China
3. School of Transportation Engineering, East China Jiaotong University, Nanchang 330013, China
 全文: PDF(1883 KB)   HTML
摘要:

为了研究城市网约车和巡游出租车的动态竞争关系及其对交通碳排放的影响,引入赫芬达尔-赫希曼指数(HHI)度量城市出租车的竞争程度. 构建包括政府和企业在内的四方博弈模型,考虑2种决策顺序,提出16种博弈场景,运用斯坦克尔伯格模型计算均衡点,筛选得到8种稳定博弈情景. 基于博弈结果,将COPERT模型与改进的Michaelis-Menten(T-M-M)方程整合,计算碳排放量. 以西安市为例,构建车辆数量(含网约车和巡游出租车)与行驶里程,车辆保有量与碳排放间的关系,计算得出不同博弈策略下的理论最优碳排放量. 结果显示,西安市网约车与巡游出租车最优比例控制在29∶35到1∶1能够维持市场平衡和低碳环保. 政府可通过限行、限号政策使巡游出租车数量略多于网约车,出台鼓励政策推动巡游出租车电气化进程.

关键词: 城市交通共享出行出租汽车竞争博弈理论碳排放    
Abstract:

To study the dynamic competitive relationship between ride-sourcing and cruise taxis in urban environments and their impact on traffic carbon emissions, the Herfindahl-Hirschman index (HHI) was introduced to quantify the competitiveness of urban taxis. A four-player game model encompassing the government and enterprises was constructed. Considering two distinct decision-making sequences, 16 potential game scenarios were proposed. Equilibrium points were computed using the Stackelberg model, leading to the identification of 8 stable game scenarios. Based on the game outcomes, carbon emissions were calculated by integrating the COPERT model and a modified Michaelis-Menten (T-M-M) equation. Taking Xi’an as a case study, relationships between vehicle numbers (including both ride-sourcing vehicles and cruise taxis) and vehicle kilometers traveled, as well as between vehicle fleet size and carbon emissions, were established. The theoretical optimal carbon emissions under the proposed game scenarios were calculated. Results show that maintaining an optimal ratio of ride-sourcing vehicles and cruise taxis within the range of 29∶35 to 1∶1 in Xi’an can effectively balance market stability and low-carbon objectives. The government can implement traffic restriction policies (e.g., driving bans based on license plates) to maintain a slightly larger fleet of cruise taxis relative to ride-sourcing vehicles, alongside introducing incentive policies to accelerate the electrification of the cruise taxi fleet.

Key words: urban transportation    shared mobility    taxis    competition    game theory    carbon emissions
收稿日期: 2024-05-19 出版日期: 2025-07-25
CLC:  U 491.1+2  
基金资助: 国家自然科学基金资助项目(52172319,71971138,72161012).
通讯作者: 孙健     E-mail: 2022234048@chd.edu.cn;jiansun@chd.edu.cn
作者简介: 矫金池(2000—),男,硕士生,从事城市交通竞合关系研究. orcid.org/0009-0005-4919-4111. E-mail:2022234048@chd.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
矫金池
孙健
倪训友

引用本文:

矫金池,孙健,倪训友. 城市网约车与巡游出租车动态博弈及碳排放效应研究[J]. 浙江大学学报(工学版), 2025, 59(7): 1373-1384.

Jinchi JIAO,Jian SUN,Xunyou NI. Dynamic game and carbon emission effects between urban ride-sourcing and cruise taxis. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1373-1384.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.07.005        https://www.zjujournals.com/eng/CN/Y2025/V59/I7/1373

图 1  四方博弈模型的逻辑关系
博弈场景$ {P}_{\mathrm{R}} $$ {P}_{\mathrm{T}} $
场景1. 严-监-合-合$ {R}_{z} $?$ {C}_{\mathrm{z}\mathrm{o}} $$ {R}_{n} $?$ {C}_{\mathrm{n}\mathrm{o}} $
场景2. 严-不-合-合$ {R}_{z} $?$ {C}_{\mathrm{z}\mathrm{o}} $$ {R}_{n} $?$ {C}_{\mathrm{n}\mathrm{o}} $
场景3. 宽-监-合-合$ {R}_{z} $?$ {C}_{\mathrm{z}\mathrm{o}} $$ {R}_{n} $?$ {C}_{no} $
场景4. 宽-不-合-合$ {R}_{z} $?$ {C}_{\mathrm{z}\mathrm{o}} $$ {R}_{n} $?$ {C}_{\mathrm{n}\mathrm{o}} $
场景5. 严-监-合-违$ {R}_{z} $?$ {C}_{\mathrm{z}\mathrm{o}} $$ {R}_{n} $+$ \Delta {R}_{n} $?$ {F}_{n} $?$ {C}_{\mathrm{n}\mathrm{o}} $
场景6. 严-不-合-违$ {R}_{z} $?$ {C}_{\mathrm{z}\mathrm{o}} $$ {R}_{n} $+$ \Delta {R}_{n} $?$ {F}_{n} $?$ {C}_{\mathrm{n}\mathrm{o}} $
场景7. 宽-监-合-违$ {R}_{z} $?$ {C}_{\mathrm{z}\mathrm{o}} $$ {R}_{n} $+$ \Delta {R}_{n} $?$ \dfrac{1}{2}F_{n} $?$ {C}_{\mathrm{n}\mathrm{o}} $
场景8. 宽-不-合-违$ {R}_{z} $?$ {C}_{\mathrm{z}\mathrm{o}} $$ {R}_{n} $+$ \Delta {R}_{n} $?$ {C}_{\mathrm{n}\mathrm{o}} $
场景9. 严-监-违-合$ {R}_{z} $+?$ {R}_{z} $?$ {F}_{z} $?$ {C}_{\mathrm{z}\mathrm{o}} $$ {R}_{n} $?$ {C}_{\mathrm{n}\mathrm{o}} $
场景10. 严-不-违-合$ {R}_{z} $+$ \Delta {R}_{z} $?$ {F}_{z} $?$ {C}_{\mathrm{z}\mathrm{o}} $$ {R}_{n} $?$ {C}_{\mathrm{n}\mathrm{o}} $
场景11. 宽-监-违-合$ {R}_{z} $+$ \Delta {R}_{z} $?$ {C}_{\mathrm{z}\mathrm{o}} $?$ \dfrac{1}{2}F_{z} $$ {R}_{n} $?$ {C}_{\mathrm{n}\mathrm{o}} $
场景12. 宽-不-违-合$ {R}_{z} $+$ \Delta {R}_{z} $?$ {C}_{\mathrm{z}\mathrm{o}} $$ {R}_{n} $?$ {C}_{\mathrm{n}\mathrm{o}} $
场景13. 严-监-违-违$ {R}_{z} $+$ \Delta {R}_{z} $?$ {F}_{z} $?$ {C}_{\mathrm{z}\mathrm{o}} $$ {R}_{n} $+$ \Delta {R}_{n} $?$ {F}_{n} $?$ {C}_{\mathrm{n}\mathrm{o}} $
场景14. 严-不-违-违$ {R}_{z} $+$ \Delta {R}_{z} $?$ {F}_{z} $?$ {C}_{\mathrm{z}\mathrm{o}} $$ {R}_{n}+\Delta {R}_{n} $?$ {F}_{n} $?$ {C}_{\mathrm{n}\mathrm{o}} $
场景15. 宽-监-违-违$ {R}_{z} $+$ \Delta {R}_{z} $?$ {C}_{\mathrm{z}\mathrm{o}} $?$ \dfrac{1}{2}F_{z} $$ {R}_{n} $+$ \Delta {R}_{n} $?$ {C}_{\mathrm{n}\mathrm{o}} $?$ \dfrac{1}{2}F_{n} $
场景16. 宽-不-违-违$ {R}_{z} $+$ \Delta {R}_{z} $?$ {C}_{\mathrm{z}\mathrm{o}} $$ {R}_{n} $+$ \Delta {R}_{n} $?$ {C}_{\mathrm{n}\mathrm{o}} $
表 1  不同博弈场景网约车和巡游出租车净收益
图 2  巡游出租车、网约车的日订单量
图 3  巡游出租车、网约车小时订单率分布
图 4  西安市主城区栅格划分情况
FIDRTQHHI
20016136 6407 2530.845
20021 0893 7624 8510.652
20031 6696 1037 7720.663
20045164499650.502
200544821260.545
200687331200.601
2007161381540.814
20084041.000
表 2  西安市主城区内赫芬达尔-赫希曼指数统计(摘录)
竞争状态编号状态描述HHI变化范围网约车数量变化范围巡游出租车数量变化范围
1.0完全竞争0.500≤HHI≤0.501[16 715, 15 285][16 715, 15 285]
2.1网约车轻微优势0.501<HHIrs≤0.520(16 715, 19 200][12 800, 15 285)
2.2网约车优势竞争0.520<HHIrs≤0.625(19 200, 24 000][8 000, 12 800)
2.3网约车基本垄断HHIrs>0.625(24 000, 32 000][0, 8 000)
3.1巡游出租车轻微优势0.501<HHIct≤0.520[12 800, 15 285)(16 715, 19 200]
3.2巡游出租车优势竞争0.520<HHIct≤0.625[8 000, 12 800)(19 200, 24 000]
3.3巡游出租车基本垄断HHIct>0.625[0, 8 000)(24 000, 32 000]
表 3  网约车、巡游出租车竞争程度标度
图 5  西安市主城区网约车与巡游出租车竞争程度分布
参数赋值参数赋值
政府宽松监管成本$ {C}_{{\mathrm{xl}}} $/
万元
10政府严格监管成本$ {C}_{{\mathrm{xs}}} $/万元15
网约车罚金$ {F}_{z} $/万元7网约车运营成本$ {C}_{{\mathrm{zo}}} $/万元6
巡游出租车罚金$ {F}_{n} $/万元7巡游出租车运营成本$ {C}_{{\mathrm{no}}} $/
万元
6
乘客监督奖励$ {B}_{y} $/万元4乘客监督成本$ {C}_{y} $/万元2
网约车合规收益$ {R}_{z} $/万元9巡游出租车合规收益$ {R}_{n} $/
万元
9
网约车违规额外收益$ \Delta {R}_{z} $/万元3巡游出租车违规额外收益$ \Delta {R}_{n} $/万元3
政府严格监管概率$ x $/%20网约车合规经营概率$ z $/%80
乘客参与监督概率$ y $/%20巡游出租车合规经营概率$ n $/%80
表 4  博弈模型参数及赋值
博弈场景$ {u}_{1} $$ {v}_{1} $$ {u}_{2} $$ {v}_{2} $$ {q}_{1} $$ {q}_{2} $
场景196961.50.75
场景296961.50.75
场景396961.50.75
场景496961.50.75
场景5121396?2.52.75
场景6121396?2.52.75
场景7129.59611
场景8126964.5?0.75
场景99612133.5?2.25
场景109612133.5?2.25
场景1196129.51.750.375
场景129612603
场景1312131213?0.5?0.25
场景1412131213?0.5?0.25
场景15129.5129.51.250.625
场景1612612631.5
表 5  不同博弈场景下参数赋值纳什均衡结果(网约车优先实施策略)
博弈场景$ K $
策略1策略2
场景11/22
场景21/22
场景31/22
场景41/22
场景7114/3
场景113/141
场景151/22
场景161/22
表 6  博弈场景的纳什均衡结果
删除场景q1q2说明
场景53.5?2.25q2为负值,表示市场无法有效运作
场景63.5?2.25q2为负值,表示市场无法有效运作
场景803q1=0,表示巡游出租车垄断市场
场景9?2.52.75q1为负值,表示市场无法有效运作
场景10?2.52.75q1为负值,表示市场无法有效运作
场景124.5?0.75q2为负值,表示市场无法有效运作
场景13?0.5?0.25q1q2均为负值,表示市场完全失控
场景14?0.5?0.25q1q2均为负值,表示市场完全失控
表 7  不稳定博弈场景的删除说明
图 6  总碳排放与网约车数量的关系
图 7  特定情形下的总碳排放比较
图 8  特定情形下碳排放随网约车数量的变化
图 9  模型关键参数对碳排放的影响
图 10  模型关键参数的期望-方差
1 张旭昆, 赵静 互联网对市场的改善和扰乱: 基于市场失灵理论的视角[J]. 浙江大学学报: 人文社会科学版, 2019, 49 (2): 86- 99
ZHANG Xukun, ZHAO Jing Internet improvement and disruption to the market: from the perspective of market failure theory[J]. Journal of Zhejiang University: Humanities and Social Sciences, 2019, 49 (2): 86- 99
2 杨学成, 涂科 出行共享中的用户价值共创机理: 基于优步的案例研究[J]. 管理世界, 2017, (8): 154- 169
YANG Xuecheng, TU Ke The co-creation mechanism of user value in travel sharing: a case study based on Uber[J]. Journal of Management World, 2017, (8): 154- 169
doi: 10.3969/j.issn.1002-5502.2017.08.013
3 易开刚, 张琦 平台经济视域下的商家舞弊治理: 博弈模型与政策建议[J]. 浙江大学学报: 人文社会科学版, 2019, 49 (5): 127- 142
YI Kaigang, ZHANG Qi Analysis of sellers’ commercial fraud in platform economy based on evolutionary game theory[J]. Journal of Zhejiang University: Humanities and Social Sciences, 2019, 49 (5): 127- 142
4 孙启鹏, 王栋, 许晓晴, 等 基于动态博弈的城市出租车投放量测算研究[J]. 交通运输系统工程与信息, 2019, 19 (5): 193- 197
SUN Qipeng, WANG Dong, XU Xiaoqing, et al Urban taxi quantity based on dynamic game theory[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19 (5): 193- 197
5 罗清和, 潘道远 “专车” 进入后的出租车市场规制策略研究[J]. 长安大学学报: 社会科学版, 2015, 17 (4): 34- 41
LUO Qinghe, PAN Daoyuan Research on the regulation strategy of the taxi market after the “special car” entering[J]. Journal of Chang’an University: Social Science Edition, 2015, 17 (4): 34- 41
6 VAN VUGT M, MEERTENS R M, VAN LANGE P A M Car versus public transportation? The role of social value orientations in a real-life social dilemma[J]. Journal of Applied Social Psychology, 1995, 25 (3): 258- 278
doi: 10.1111/j.1559-1816.1995.tb01594.x
7 PEDERSEN P A Moral hazard in traffic games[J]. Journal of Transport Economics and Policy, 2003, 37 (1): 47- 68
8 YANG H, ZHANG X, MENG Q Stackelberg games and multiple equilibrium behaviors on networks[J]. Transportation Research Part B: Methodological, 2007, 41 (8): 841- 861
doi: 10.1016/j.trb.2007.03.002
9 杨露萍, 钱大琳 小汽车通勤向公共交通转移演化博弈分析[J]. 北京交通大学学报, 2014, 38 (2): 151- 156
YANG Luping, QIAN Dalin Evolutionary game analysis on modal shift of car commuters to public transport[J]. Journal of Beijing Jiaotong University, 2014, 38 (2): 151- 156
doi: 10.11860/j.issn.1673-0291.2014.04.27
10 SUN Q, HE Y, WANG Y, et al Evolutionary game between government and ride-hailing platform: evidence from China[J]. Discrete Dynamics in Nature and Society, 2019, 2019 (1): 9545102
11 杨浩雄, 魏彬 网络约车与出租车的竞争博弈研究: 以平台补贴为背景[J]. 北京社会科学, 2016, (5): 68- 76
YANG Haoxiong, WEI Bin On the competition game between online tailored taxi and traditional taxi under platform’s subsidy policy[J]. Social Sciences of Beijing, 2016, (5): 68- 76
12 SUN S, WANG W Analysis on the market evolution of new energy vehicle based on population competition model[J]. Transportation Research Part D: Transport and Environment, 2018, 65: 36- 50
doi: 10.1016/j.trd.2018.08.005
13 蒋慧峰, 陈森发 基于时不变综合系数的运输方式动力学模型[J]. 系统工程学报, 2010, 25 (1): 85- 90
JIANG Huifeng, CHEN Senfa Dynamic model of transportation modes based on time-invariant comprehensive coefficient[J]. Journal of Systems Engineering, 2010, 25 (1): 85- 90
14 SUN D J, JIAO J C, NI X Y, et al Modeling dynamic competition among urban taxis and the impact on carbon emissions[J]. Sustainable Cities and Society, 2025, 122: 106258
doi: 10.1016/j.scs.2025.106258
15 孙会君, 杨爽, 吕莹, 等 数据驱动下共享出行资源配置的双层博弈问题研究[J]. 管理世界, 2023, 39 (4): 160- 175
SUN Huijun, YANG Shuang, LV Ying, et al Research on data-driven bi-level game problems in resource allocation of sharing mobility systems[J]. Journal of Management World, 2023, 39 (4): 160- 175
16 陈启香, 吕斌, 陈喜群, 等 空间异质性建成环境对出租车与地铁竞合关系的影响[J]. 交通运输系统工程与信息, 2022, 22 (3): 25- 35
CHEN Qixiang, LV Bin, CHEN Xiqun, et al Impacts of built environment on competition and cooperation relationship between taxi and subway considering spatial heterogeneity[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22 (3): 25- 35
17 奉鸣, 信红喜, 骆冠良, 等 未来我国出租车发展趋势及市场化改革研究[J]. 综合运输, 2023, 45 (4): 28- 32
FENG Ming, XIN Hongxi, LUO Guanliang, et al Development trend and market reform of China’s taxi in the future[J]. China Transportation Review, 2023, 45 (4): 28- 32
18 GRAHN R, HARPER C D, HENDRICKSON C, et al Socioeconomic and usage characteristics of transportation network company (TNC) riders[J]. Transportation, 2020, 47 (6): 3047- 3067
doi: 10.1007/s11116-019-09989-3
19 杨燕, 胥川 出租车和网约车载客空间特征分析[J]. 交通运输工程与信息学报, 2020, 18 (1): 68- 76
YANG Yan, XU Chuan Analysis the spatial characteristic of taxi and ridesourcing service trips[J]. Journal of Transportation Engineering and Information, 2020, 18 (1): 68- 76
doi: 10.3969/j.issn.1672-4747.2020.01.009
20 韩印, 李媛媛, 李文翔, 等 基于轨迹数据的网约车排放时空特征分析[J]. 交通运输系统工程与信息, 2022, 22 (1): 234- 242
HAN Yin, LI Yuanyuan, LI Wenxiang, et al Analyzing spatiotemporal characteristics of ridesourcing emissions based on trajectory data[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22 (1): 234- 242
21 ROBINSON R M, KHATTAK A Route change decision making by hurricane evacuees facing congestion[J]. Transportation Research Record, 2010, 2196 (1): 168- 175
doi: 10.3141/2196-18
22 HENRY E, FURNO A, EL FAOUZI N E Approach to quantify the impact of disruptions on traffic conditions using dynamic weighted resilience metrics of transport networks[J]. Transportation Research Record, 2021, 2675 (4): 61- 78
doi: 10.1177/0361198121998663
23 SHORSHANI F M, ANDRÉ M, BONHOMME C, et al Modelling chain for the effect of road traffic on air and water quality: techniques, current status and future prospects[J]. Environmental Modelling and Software, 2015, 64: 102- 123
doi: 10.1016/j.envsoft.2014.11.020
24 LI Y, ZHENG J, DONG S, et al Temporal variations of local traffic CO2 emissions and its relationship with CO2 flux in Beijing, China[J]. Transportation Research Part D: Transport and Environment, 2019, 67: 1- 15
doi: 10.1016/j.trd.2018.10.007
25 赵光辉, 李玲玲 大数据时代新型交通服务商业模式的监管——以网约车为例[J]. 管理世界, 2019, (6): 109- 118
ZHAO Guanghui, LI Lingling The supervision of the new transport service business model in big data era: a case study of ride-hailing service[J]. Journal of Management World, 2019, (6): 109- 118
doi: 10.3969/j.issn.1002-5502.2019.06.010
26 LAI X, LIU Q, WANG W, et al Dynamic game with perfect and complete information based dynamic channel assignment[J]. Applied Intelligence, 2013, 39 (4): 692- 704
doi: 10.1007/s10489-012-0402-8
27 周忠宝, 任甜甜, 肖和录, 等 资产收益序列相依下的多阶段投资博弈模型[J]. 管理科学学报, 2019, 22 (7): 66- 88
ZHOU Zhongbao, REN Tiantian, XIAO Helu, et al Multi-period portfolio game model with serially correlated returns[J]. Journal of Management Sciences in China, 2019, 22 (7): 66- 88
doi: 10.3969/j.issn.1007-9807.2019.07.005
28 罗掌华, 李亚坤, 冯力 “完全竞争”的一种理论思考[J]. 兰州学刊, 1996, (5): 34- 36
LUO Zhanghua, LI Yakun, FENG Li A theoretical reflection on “perfect competition”[J]. Lanzhou Academic Journal, 1996, (5): 34- 36
29 赵涛 竞争优势与优势竞争: 后发地区的发展定位与竞争战略[J]. 经济问题探索, 2003, (4): 29- 35
ZHAO Tao To fixed competition advantage and advantage competition of development position and choice the competitive strategy in developing region[J]. Inquiry into Economic Issues, 2003, (4): 29- 35
doi: 10.3969/j.issn.1006-2912.2003.04.008
30 王京滨, 李博 银行业务地理集中是否降低了金融风险? 基于中国城市商业银行微观数据的研究[J]. 管理世界, 2021, (5): 87- 97
WANG Jingbin, LI Bo Does the geographical concentration of banking business reduce financial risks? A study based on micro-level dataset of Chinese city commercial banks[J]. Journal of Management World, 2021, (5): 87- 97
doi: 10.3969/j.issn.1002-5502.2021.05.008
31 孙健, 宋茂星, 邱果, 等 基于电动汽车大数据的多等级充电站选址及服务能力研究[J]. 中国公路学报, 2024, 37 (4): 48- 60
SUN Jian, SONG Maoxing, QIU Guo, et al Location and service capability of multilevel charging stations based on electric vehicle big data[J]. China Journal of Highway and Transport, 2024, 37 (4): 48- 60
32 LEI L C, GAO S, ZENG E Y Regulation strategies of ride-hailing market in China: an evolutionary game theoretic perspective[J]. Electronic Commerce Research, 2020, 20 (3): 535- 563
doi: 10.1007/s10660-020-09412-5
33 张群, 张卫国, 马勇 中国金融市场系统复杂性的演化机理与管理研究[J]. 管理科学学报, 2017, 20 (1): 75- 86
ZHANG Qun, ZHANG Weiguo, MA Yong Evolution mechanisms and management of systemic complexity in China’s financial markets[J]. Journal of Management Sciences in China, 2017, 20 (1): 75- 86
doi: 10.3969/j.issn.1007-9807.2017.01.008
34 ARAÚJO J P C, OLIVEIRA J R M, SILVA H M R D The importance of the use phase on the LCA of environmentally friendly solutions for asphalt road pavements[J]. Transportation Research Part D: Transport and Environment, 2014, 32: 97- 110
doi: 10.1016/j.trd.2014.07.006
35 BERKOWICZ R, WINTHER M, KETZEL M Traffic pollution modelling and emission data[J]. Environmental Modelling and Software, 2006, 21 (4): 454- 460
doi: 10.1016/j.envsoft.2004.06.013
36 ZHANG S, WU Y, LIU H, et al Real-world fuel consumption and CO2 emissions of urban public buses in Beijing[J]. Applied Energy, 2014, 113: 1645- 1655
doi: 10.1016/j.apenergy.2013.09.017
37 邬彩霞 中国低碳经济发展的协同效应研究[J]. 管理世界, 2021, (8): 105- 116
WU Caixia Research on the synergistic effect of low-carbon economy in China[J]. Journal of Management World, 2021, (8): 105- 116
doi: 10.3969/j.issn.1002-5502.2021.08.009
[1] 李劲业,李永强. 融合知识图谱的时空多图卷积交通流量预测[J]. 浙江大学学报(工学版), 2024, 58(7): 1366-1376.
[2] 陈永恒,杨绥程,李世豪,寇诗雨. 基于元胞自动机的城市快速路长距离交织区运行仿真[J]. 浙江大学学报(工学版), 2024, 58(12): 2575-2585.
[3] 黄静颖,焦学军,龙吉生. 垃圾焚烧发电项目碳排放计算对比[J]. 浙江大学学报(工学版), 2024, 58(11): 2338-2346.
[4] 马壮林,毕宇明,张锐. 换乘优惠政策下公共交通乘客换乘决策行为分析[J]. 浙江大学学报(工学版), 2023, 57(12): 2513-2523.
[5] 王飞,徐维祥. 基于LSTM神经网络改进的路阻函数模型[J]. 浙江大学学报(工学版), 2021, 55(6): 1065-1071.
[6] 陈涵娟,达飞鹏,盖绍彦. 基于竞争注意力融合的深度三维点云分类网络[J]. 浙江大学学报(工学版), 2021, 55(12): 2342-2351.
[7] 张悦,高照,李娜. “守门人”医疗系统中的转诊协调机制[J]. 浙江大学学报(工学版), 2020, 54(12): 2445-2456.
[8] 裴小兵,于秀燕,王尚磊. 混合帝国竞争算法求解旅行商问题[J]. 浙江大学学报(工学版), 2019, 53(10): 2003-2012.
[9] 吴雪松, 程乐鸣, 闫珂, 张维国. 工业级多孔介质低氮燃烧器试验研究[J]. 浙江大学学报(工学版), 2018, 52(11): 2136-2141.
[10] 张莉, 王俏丽, 李伟, 李素静. 电力行业温室气体排放情景分析[J]. 浙江大学学报(工学版), 2015, 49(12): 2244-2251.
[11] 俞晋频,邱坤赞,宋浩,高翔,周劲松. Cr/TiO2催化剂汞氧化的实验[J]. 浙江大学学报(工学版), 2015, 49(11): 2186-2192.
[12] 郑军,唐任仲. 面向砂型铸造的碳排放效率建模及评价方法[J]. 浙江大学学报(工学版), 2015, 49(1): 102-109.
[13] 王跃,杨昆,杨华,陈国柱. 通用SPWM发生器的实现及脉冲竞争消除新方法[J]. 浙江大学学报(工学版), 2014, 48(6): 2-.
[14] 王跃,杨昆,杨华,陈国柱. 通用SPWM发生器的实现及脉冲竞争消除新方法[J]. 浙江大学学报(工学版), 2014, 48(11): 2087-2093.
[15] 孙晓燕,董伟伟,王海龙,王捷. 考虑生命周期碳补偿成本的桥梁维修优化决策[J]. J4, 2012, 46(11): 2013-2019.