计算机技术 |
|
|
|
|
基于改进YOLOv5s网络的绝缘子缺陷检测 |
李运堂( ),张坤,李恒杰,朱文凯,金杰,章聪,王冰清,OPPONGFrancis |
中国计量大学 机电工程学院,浙江 杭州 310018 |
|
Insulator defect detection based on improved YOLOv5s network |
Yuntang LI( ),Kun ZHANG,Hengjie LI,Wenkai ZHU,Jie JIN,Cong ZHANG,Bingqing WANG,Francis OPPONG |
College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China |
引用本文:
李运堂,张坤,李恒杰,朱文凯,金杰,章聪,王冰清,OPPONGFrancis. 基于改进YOLOv5s网络的绝缘子缺陷检测[J]. 浙江大学学报(工学版), 2024, 58(12): 2469-2478.
Yuntang LI,Kun ZHANG,Hengjie LI,Wenkai ZHU,Jie JIN,Cong ZHANG,Bingqing WANG,Francis OPPONG. Insulator defect detection based on improved YOLOv5s network. Journal of ZheJiang University (Engineering Science), 2024, 58(12): 2469-2478.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.12.006
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I12/2469
|
1 |
PRATES R M, CRUZ R, MAROTTA A P, et al Insulator visual non-conformity detection in overhead power distribution lines using deep learning[J]. Computers and Electrical Engineering, 2019, 78: 343- 355
doi: 10.1016/j.compeleceng.2019.08.001
|
2 |
ANTWI-BEKOE E, LIU G, AINAM J P, et al A deep learning approach for insulator instance segmentation and defect detection[J]. Neural Computing and Applications, 2022, 34 (9): 7253- 7269
doi: 10.1007/s00521-021-06792-z
|
3 |
FENG Z, GUO L, HUANG D, et al. Electrical insulator defects detection method based on YOLOv5 [C] // IEEE Data Driven Control and Learning Systems Conference . Suzhou: IEEE, 2021: 979−984.
|
4 |
马进, 白雨生 应用于绝缘子缺陷检测的轻量化YOLOv4研究[J]. 电子测量技术, 2022, 45 (14): 123- 130 MA Jin, BAI Yusheng Research on lightweight YOLOv4 applied to insulator defect detection[J]. Electronic Measurement Technology, 2022, 45 (14): 123- 130
|
5 |
肖粲俊, 潘睿志, 李超, 等 基于改进YOLOv5s绝缘子缺陷检测技术研究[J]. 电子测量技术, 2022, 45 (24): 137- 144 XIAO Canjun, PAN Ruizhi, LI Chao, et al Research on defection technology based on improved YOLOv5s insulator[J]. Electronic Measurement Technology, 2022, 45 (24): 137- 144
|
6 |
GAO Z, YANG G, LI E, et al Novel feature fusion module-based detector for small insulator defect detection[J]. IEEE Sensors Journal, 2021, 21 (15): 16807- 16814
doi: 10.1109/JSEN.2021.3073422
|
7 |
谢静, 杜耀文, 刘志坚, 等 基于轻量化改进型YOLOv5s的可见光绝缘子缺陷检测算法[J]. 电网技术, 2023, 47 (12): 5273- 5283 XIE Jing, DU Yaowen, LIU Zhijian, et al Defect detection algorithm based on lightweight and improved YOLOv5s for visible light insulators[J]. Power System Technology, 2023, 47 (12): 5273- 5283
|
8 |
GAO J, CHEN X, LIN D. Insulator defect detection based on improved YOLOv5 [C] // 5th Asian Conference on Artificial Intelligence Technology . Haikou: IEEE, 2021: 53−58.
|
9 |
颜宏文, 万俊杰, 潘志敏, 等. 基于改进YOLOv5-Lite轻量级的配电组件缺陷识别[EB/OL]. (2022-8-11) [2023-10-23]. https://doi.org/10.13336/j.1003-6520.hve.20220387.
|
10 |
HUANG Y, JIANG L, HAN T, et al High-accuracy insulator defect detection for overhead transmission lines based on improved YOLOv5[J]. Applied Sciences, 2022, 12 (24): 1- 13
|
11 |
李利荣, 张云良, 陈鹏, 等 基于轻量化YOLOv4的复杂场景绝缘子缺陷检测算法[J]. 光电子激光, 2022, 33 (6): 598- 606 LI Lirong, ZHANG Yunliang, CHEN Peng, et al Insulator defect detection algorithm for complex scenes based on lightweight YOLOv4[J]. Journal of Optoelectronics Laser, 2022, 33 (6): 598- 606
|
12 |
LIAN X, WANG D Insulator defect detection algorithm based on improved YOLOv5[J]. Frontiers in Computing and Intelligent Systems, 2023, 3 (2): 44- 47
doi: 10.54097/fcis.v3i2.7168
|
13 |
ZHAO L, ZUO M, CUI Y, et al Fast detection of defective insulator based on improved YOLOv5s[J]. Computational Intelligence and Neuroscience, 2022, 12 (2): 8955292
|
14 |
ZHANG Y, WEI B, ZHAO L, et al. Insulator defect detection based on feature fusion and attention mechanism [C]// IEEE International Conference on Signal Processing . Beijing: IEEE, 2022: 1−6.
|
15 |
HOWARD A, SANDLER M, CHU G, et al. Searching for mobilenetv3 [C]// IEEE International Conference on Computer Vision . Seoul: IEEE, 2019: 1314−1324.
|
16 |
徐建军, 黄立达, 闫丽梅, 等 基于层次多任务深度学习的绝缘子自爆缺陷检测[J]. 电工技术学报, 2021, 36 (7): 1407- 1415 XU Jianjun, HUANG Lida, YAN Limei, et al Insulator self-explosion defect detection based on hierarchical multi-task deep learning[J]. Transactions of China Electrotechnical Society, 2021, 36 (7): 1407- 1415
|
17 |
YANG L, FAN J, SONG S, et al A light defect detection algorithm of power insulators from aerial images for power inspection[J]. Neural Computing and Applications, 2022, 34 (20): 17951- 17961
doi: 10.1007/s00521-022-07437-5
|
18 |
李斌, 屈璐瑶, 朱新山, 等 基于多尺度特征融合的绝缘子缺陷检测[J]. 电工技术学报, 2023, 38 (1): 60- 70 LI Bin, QU Luyao, ZHU Xinshan, et al Insulator defect detection based on multi-scale feature fusion[J]. Transactions of China Electrotechnical Society, 2023, 38 (1): 60- 70
|
19 |
HE H, HUANG X, SONG Y, et al An insulator self-blast detection method based on YOLOv4 with Aerial Images[J]. Energy Reports, 2022, 8: 448- 454
|
20 |
韩俊, 袁小平, 王准, 等 基于YOLOv5s的无人机密集小目标检测算法[J]. 浙江大学学报: 工学版, 2023, 57 (6): 1224- 1233 HAN Jun, YUAN Xiaoping, WANG Zhun, et al UAV dense small target detection algorithm based on YOLOv5s[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (6): 1224- 1233
|
21 |
DIAN S, ZHONG X, ZHONG Y Faster R-Transformer: an efficient method for insulator detection in complex aerial environments[J]. Measurement, 2022, 199: 111238
doi: 10.1016/j.measurement.2022.111238
|
22 |
李季, 刘乐, 牛雨潇, 等 融入注意力的YOLOv3绝缘子串识别方法[J]. 高压电器, 2022, 58 (11): 67- 74 LI Ji, LIU Le, NIU Yuxiao, et al YOLOv3 identification method incorporating attention for insulator string[J]. High Voltage Apparatus, 2022, 58 (11): 67- 74
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|