| 
					
						| 
								
									| 计算机技术、自动化技术 |  |   |  |  
    					|  |  
    					| 基于改进生成对抗网络的图像数据增强方法 |  
						| 詹燕(  ),胡蝶,汤洪涛,鲁建厦,谭健,刘长睿 |  
					| 浙江工业大学 机械工程学院,浙江 杭州 310023 |  
						|  |  
    					| Image data enhancement method based on improved generative adversarial network |  
						| Yan ZHAN(  ),Die HU,Hong-tao TANG,Jian-sha LU,Jian TAN,Chang-rui LIU |  
						| College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China |  
					
						| 
								
									|  
          
          
            
             
												
												
												| 
												
												引用本文:
																																詹燕,胡蝶,汤洪涛,鲁建厦,谭健,刘长睿. 基于改进生成对抗网络的图像数据增强方法[J]. 浙江大学学报(工学版), 2023, 57(10): 1998-2010.	
																															 
																																Yan ZHAN,Die HU,Hong-tao TANG,Jian-sha LU,Jian TAN,Chang-rui LIU. Image data enhancement method based on improved generative adversarial network. Journal of ZheJiang University (Engineering Science), 2023, 57(10): 1998-2010.	
																															 链接本文: 
																
																	
																	https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.10.009
																	   或   
																
																
																https://www.zjujournals.com/eng/CN/Y2023/V57/I10/1998
														    |  
            
									            
									                
																																															
																| 1 | 康守强, 胡明武, 王玉静, 等 基于特征迁移学习的变工况下滚动轴承故障诊断方法[J]. 中国电机工程学报, 2019, 39 (3): 764- 772 KANG Shou-qiang, HU Ming-wu, WANG Yu-jing, et al Fault diagnosis method of a rolling bearing under variable working conditions based on feature transfer learning[J]. Proceedings of the CSEE, 2019, 39 (3): 764- 772
 doi: 10.13334/J.0258-8013.PCSEE.180130
 |  
																| 2 | 肖雄, 肖宇雄, 张勇军, 等 基于二维灰度图的数据增强方法在电机轴承故障诊断的应用研究[J]. 中国电机工程学报, 2021, 41 (2): 738- 749 XIAO Xiong, XIAO Yu-xiong, ZHANG Yong-jun, et al Research on the application of the data augmentation method based on 2D gray pixel images in the fault diagnosis of motor bearing[J]. Proceedings of the CSEE, 2021, 41 (2): 738- 749
 doi: 10.13334/j.0258-8013.pcsee.200834
 |  
																| 3 | PAN S J, YANG Q A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 22 (10): 1345- 1359 |  
																| 4 | SALAKHUTDINOV R, LAROCHELLE H. Efficient learning of deep Boltzmann machines [C]// Proceedings of the 13th International Conference on Artificial Intelligence and Statistics. Sardinia: JMLR, 2010: 693-700. |  
																| 5 | BENGIO Y, LAUFER E, ALAIN G, et al. Deep generative stochastic networks trainable by backprop [C]// International Conference on Machine Learning. Beijing: PMLR, 2014: 226-234. |  
																| 6 | KINGMA D P, WELLING M. Auto-encoding variational bayes [EB/OL]. [2013-12-20]. https://arxiv.org/abs/1312.6114. |  
																| 7 | VANDEN OORD A, KALCHBRENNER N, ESPEHOLT L, et al. Conditional image generation with pixel-cnn decoders [C]// 30th Conference on Neural Information Processing Systems. Barcelona: CA, 2016: 4797-4805. |  
																| 8 | VAN OORD A, KALCHBRENNER N, KAVUKCUOGLU K. Pixel recurrent neural networks [C]// International Conference on Machine Learning. New York: JMLR, 2016: 1747-1756. |  
																| 9 | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al Generative adversarial networks[J]. Communications of the ACM, 2020, 63 (11): 139- 144 doi: 10.1145/3422622
 |  
																| 10 | MIRZA M, OSINDERO S. Conditional generative adversarial nets [EB/OL]. [2014-11-06]. https://arxiv.org/abs/1411.1784. |  
																| 11 | RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks [EB/OL]. [2015-11-19]. https://arxiv.org/abs/1511.06434. |  
																| 12 | ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks [C]// International Conference on Machine Learning. Sydney: PMLR, 2017: 214-223. |  
																| 13 | GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of wasserstein gans [EB/OL]. [2017-03-31]. https://arxiv.org/abs/1704.00028. |  
																| 14 | BERTHELOT D, SCHUMM T, METZ L. Boundary equilibrium generative adversarial networks [EB/OL]. [2017-03-21]. https://arxiv.org/abs/1703.10717. |  
																| 15 | KARRAS T, AILA T, LAINE S, et al. Progressive growing of gans for improved quality, stability, and variation [C]// International Conference on Learning Representations. Vancouver: JMLR, 2018: 26. |  
																| 16 | KARRAS T, LAINE S, AILA T. A style-based generator architecture for generative adversarial networks [C]// CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 4396-4405. |  
																| 17 | KARRAS T, LAINE S, AITTALA M, et al. Analyzing and improving the image quality of style GAN [C]// CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 8107-8116. |  
																| 18 | KARRAS T, AITTALA M, LAINE S, et al Alias-free generative adversarial networks[J]. Advances in Neural Information Processing Systems, 2021, 34: 852- 863 |  
																| 19 | DONG C, LOY C C, HE K, et al Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38 (2): 295- 307 |  
																| 20 | DEON A F, MENYAEV Y A Twister generator of random normal numbers by box-muller model[J]. International Journal of Trends in Computer Science, 2020, 16 (1): 1- 13 |  
																| 21 | 何新林, 戚宗锋, 李建勋 基于隐变量后验生成对抗网络的不平衡学习[J]. 上海交通大学学报, 2021, 55 (5): 557- 565 HE Xin-lin, QI Zong-feng, LI Jian-xun Unbalanced learning of generative adversarial network based on latent posterior[J]. Journal of Shanghai Jiaotong University, 2021, 55 (5): 557- 565
 doi: 10.16183/j.cnki.jsjtu.2019.264
 |  
																| 22 | ARJOVSKY M, BOTTOU L. Towards principled methods for training generative adversarial networks [EB/OL]. [2017-01-17]. https://arxiv.org/abs/1701.04862. |  
             
												
											    	
											        	|  | Viewed |  
											        	|  |  |  
												        |  | Full text 
 | 
 
 |  
												        |  |  |  
												        |  | Abstract 
 | 
 |  
												        |  |  |  
												        |  | Cited |  |  
												        |  |  |  |  
													    |  | Shared |  |  
													    |  |  |  |  
													    |  | Discussed |  |  |  |  |