Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (12): 2463-2470    DOI: 10.3785/j.issn.1008-973X.2022.12.015
土木工程、水利工程     
钢桥腐蚀-疲劳耦合计算模型及影响因素分析
何余良1(),陈织文1,叶肖伟2,*(),张治成2
1. 绍兴文理学院 土木工程学院,浙江 绍兴 312000
2. 浙江大学 建筑工程学院,浙江 杭州 310058
Corrosion-fatigue coupling calculation model of steel bridge and its influencing factor analysis
Yu-liang HE1(),Zhi-wen CHEN1,Xiao-wei YE2,*(),Zhi-cheng ZHANG2
1. School of Civil Engineering, Shaoxing University, Shaoxing 312000, China
2. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1102 KB)   HTML
摘要:

为了研究钢桥在交通荷载和腐蚀环境共同作用下的疲劳性能,考虑钢桥腐蚀-疲劳耦合效应,建立有2个阶段的腐蚀-疲劳耦合计算模型. 在点蚀坑萌生阶段,考虑循环交通荷载对腐蚀过程的加速作用;在裂纹扩展阶段,引入裂纹扩展腐蚀加速因子,考虑腐蚀环境对裂纹扩展的影响. 对钢桥顶板和纵肋焊接节点的腐蚀疲劳寿命算例分析表明:考虑腐蚀-疲劳耦合作用的疲劳强度相对于疲劳试验、规范AASHTO、规范BS5400和不考虑腐蚀-疲劳耦合作用的情况,分别降低41.25%、28.80%、44.60%和10.90%. 对所建模型开展加载频率、腐蚀环境、腐蚀坑形貌特征等影响因素的比较研究,结果表明:随着加载频率的增加,焊接节点的腐蚀疲劳强度递增,当加载频率大于0.6 Hz时,焊接节点的腐蚀疲劳强度相近;随着腐蚀环境变强,腐蚀电流和腐蚀速率逐渐增大;腐蚀疲劳强度随着腐蚀坑形貌特征的增大而增大.

关键词: 钢桥腐蚀-疲劳模型耦合效应点蚀裂纹扩展    
Abstract:

A two-stage corrosion-fatigue coupling calculation model was established considering the corrosion fatigue coupling effect of steel bridges, in order to study the fatigue performance of steel bridges under the combined action of traffic load and corrosive environment. In the stage of pitting, the acceleration effect of cyclic traffic load on the corrosion process was considered. In the stage of crack propagation, the corrosion acceleration factor of crack growth was introduced, and the influence of corrosion environment on crack growth was considered. The corrosion fatigue life calculation example of welded joints of top plate and longitudinal rib of steel bridge shows that the fatigue strength considering corrosion fatigue coupling decreases by 41.25%, 28.80%, 44.60% and 10.90% respectively compared with fatigue test, code AASHTO, code BS5400 and no corrosion fatigue coupling. In addition, a comparative study was carried out on the influence factors of the established model, such as loading frequency, corrosion environment, and corrosion pit morphology. Results show that the corrosion fatigue strength of welded joints increases with the increase of loading frequency, and the corrosion fatigue strength is close when the loading frequency is greater than 0.6 Hz. With the corrosion environment becoming stronger, the corrosion current and corrosion rate gradually increase. The corrosion fatigue strength increases with the increase of corrosion pit morphology.

Key words: steel bridge    corrosion-fatigue model    coupling effect    pitting    crack propagation
收稿日期: 2021-10-09 出版日期: 2023-01-03
CLC:  U 441  
基金资助: 国家自然科学基金资助项目(51822810, 51778574);浙江省自然科学基金资助项目(LR19E080002);浙江省建设科技资助项目(2020K127);绍兴市产业关键技术公关计划项目(2022026001)
通讯作者: 叶肖伟     E-mail: hyliang88888@163.com;cexwye@zju.edu.cn
作者简介: 何余良(1977—),男,副教授,博士,从事组合结构研究. orcid.org/0000-0003-4669-5541. E-mail: hyliang88888@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
何余良
陈织文
叶肖伟
张治成

引用本文:

何余良,陈织文,叶肖伟,张治成. 钢桥腐蚀-疲劳耦合计算模型及影响因素分析[J]. 浙江大学学报(工学版), 2022, 56(12): 2463-2470.

Yu-liang HE,Zhi-wen CHEN,Xiao-wei YE,Zhi-cheng ZHANG. Corrosion-fatigue coupling calculation model of steel bridge and its influencing factor analysis. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2463-2470.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.12.015        https://www.zjujournals.com/eng/CN/Y2022/V56/I12/2463

图 1  腐蚀-疲劳耦合作用机理示意图
图 2  顶板和纵向U形肋焊接节点示意图
参数 数值
释放电子数n 2
法拉第常数F/(C·mol?1) 96500
材料密度ρ/(kg·m?3) 7850
摩尔质量M/(kg·mol?1) 56×10?3
点蚀电流系数Ip0/(C·mol?1) 1.0×10?7
单位体积活化能变化量ΔH/(J·mol?1) 15.5×103
气体常数R/(J·mol?1·K?1) 8.314
绝对温度T/ K 293
表 1  点蚀坑萌生阶段参数取值[11]
图 3  不同情况下钢桥疲劳的应力-寿命曲线
图 4  不同加载频率下的腐蚀疲劳应力-寿命曲线
图 5  不同腐蚀环境下的腐蚀疲劳应力-寿命曲线
图 6  不同腐蚀坑形貌特征在不同加载频率下的疲劳强度
图 7  不同腐蚀坑形貌特征在不同加载频率下的腐蚀疲劳应力-寿命曲线
1 NI Y Q, YE X W, KO J M Monitoring-based fatigue reliability assessment of steel bridges: analytical model and application[J]. Journal of Structural Engineering, 2010, 136 (12): 1563- 1573
doi: 10.1061/(ASCE)ST.1943-541X.0000250
2 叶肖伟, 傅大宝, 倪一清, 等 考虑多因素共同作用的钢桥焊接节点疲劳可靠度评估[J]. 土木工程学报, 2013, 46 (10): 89- 99
YE Xiao-wei, FU Da-bao, NI Yi-qing, et al Fatigue reliability assessment of welded joints in steel bridge considering multiple effects[J]. China Civil Engineering Journal, 2013, 46 (10): 89- 99
doi: 10.15951/j.tmgcxb.2013.10.009
3 王春生, 翟慕赛, HOUANKPO T O N 正交异性钢桥面板典型细节疲劳强度研究[J]. 工程力学, 2020, 37 (8): 102- 111
WANG Chun-sheng, ZHAI Mu-sai, HOUANKPO T O N Study on fatigue strength of typical details of orthogonally heterosexual steel bridge panels[J]. Engineering Mechanics, 2020, 37 (8): 102- 111
doi: 10.6052/j.issn.1000-4750.2019.09.0518
4 张清华, 卜一之, 李乔, 等 正交异性钢桥面板疲劳问题的研究进展[J]. 中国公路学报, 2017, 30 (3): 14- 30
ZHANG Qing-hua, BU Yi-zhi, LI Qiao Review on fatigue problems of orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2017, 30 (3): 14- 30
doi: 10.3969/j.issn.1001-7372.2017.03.002
5 张清华, 李俊, 袁道云, 等 深圳至中山跨江通道钢桥面板结构疲劳试验研究[J]. 土木工程学报, 2013, 53 (11): 102- 115
ZHANG Qing-hua, LI Jun, YUAN Dao-yun, et al Fatigue model tests of orthotropic steel bridge deck of Shenzhen-Zhongshan Link[J]. China Civil Engineering Journal, 2013, 53 (11): 102- 115
doi: 10.15951/j.tmgcxb.2020.11.011
6 王春生, 刘鑫, 俞欣, 等 基于无损探测信息的既有钢桥构件疲劳可靠度更新评估[J]. 土木工程学报, 2010, 43 (8): 81- 87
WANG chun-sheng, LIU Xin, YU Xin, et al Fatigue reliability updating evaluation using nondestructive inspections for existing steel bridges[J]. China Civil Engineering Journal, 2010, 43 (8): 81- 87
doi: 10.15951/j.tmgcxb.2010.08.006
7 FISHER J W, BARSOM J M Evaluation of cracking in the rib-to-deck welds of the Bronx-Whitestone Bridge[J]. Journal of Bridge Engineering, 2016, 21 (3): 04015065
doi: 10.1061/(ASCE)BE.1943-5592.0000823
8 ZMETRA K M, MCUMLLEN K F, ZAGHI A E, et al Experimental study of UHPC repair for corrosion-damaged steel girder ends[J]. Journal of Bridge Engineering, 2017, 22 (8): 04017037
9 LI L, MAHMOODIAN M, LI C Q, et al Effect of corrosion and hydrogen embrittlement on microstructure and mechanical properties of mild steel[J]. Construction and Building Materials, 2018, 170 (5): 78- 90
10 CALDERON-URISZAR-ALDACA I, BRIZ E, BIEZMA M V, et al A plain linear rule for fatigue analysis under natural loading considering the coupled fatigue and corrosion effect[J]. International Journal of Fatigue, 2019, 122: 141- 151
doi: 10.1016/j.ijfatigue.2019.01.008
11 ZHANG Y, ZHENG K, HENG J, et al Corrosion-fatigue evaluation of uncoated weathering steel bridges[J]. Applied Sciences, 2019, 9 (17): 3461
12 GUO Z, MA Y, WANG L, et al Modelling guidelines for corrosion-fatigue life prediction of concrete bridges: considering corrosion pit as a notch or crack[J]. Engineering Failure Analysis, 2019, 105 (11): 883- 895
13 CUI C J, CHEN A R, MA R J An improved continuum damage mechanics model for evaluating corrosion-fatigue life of high-strength steel wires in the real service environment[J]. International Journal of Fatigue, 2020, 135 (6): 105540
14 孙宾. 损伤跨尺度演化致结构失效过程的模拟和分析方法[D]. 南京: 东南大学, 2016 : 1-16.
SUN Bin. Simulation and analysis method of failure process of engineering structures due to trans-scale damage evolution [D]. Nanjing : Southeast University, 2016 : 1-16.
15 DENG L, YAN W, NIE L A simple corrosion fatigue design method for bridges considering the coupled corrosion-overloading effect[J]. Engineering Structures, 2019, 178 (1): 309- 317
16 LIU Z X, GUO T, HEBDON M H, et al Corrosion fatigue analysis and reliability assessment of short suspenders in suspension and arch bridges[J]. Journal of Performance of Constructed Facilities, 2018, 32 (5): 04018060
17 YANG D H, YI T H, LI H N Coupled fatigue-corrosion failure analysis and performance assessment of RC bridge deck slabs[J]. Journal of Bridge Engineering, 2017, 22 (10): 04017077
18 JIE Z, LI Y, WEI X, et al Fatigue life prediction of welded joints with artificial corrosion pits based on continuum damage mechanics[J]. Journal of Constructional Steel Research, 2018, 148 (9): 542- 550
19 YANG S, YANG H, LIU G, et al Approach for fatigue damage assessment of welded structure considering coupling effect between stress and corrosion[J]. International Journal of Fatigue, 2016, 88 (7): 88- 95
20 MAO M, ZHANG X, TU S, et al Prediction of crack initiation life due to corrosion pits[J]. Journal of Aircraft, 2015, 51 (3): 805- 810
21 LI S X, AKID R Corrosion fatigue life prediction of a steel shaft material in seawater[J]. Engineering Failure Analysis, 2013, 34 (8): 324- 334
22 SHI P, MAHADEVAN S Corrosion fatigue and multiple site damage reliability analysis[J]. International Journal of Fatigue, 2003, 25 (6): 457- 469
doi: 10.1016/S0142-1123(03)00020-3
23 梁彩凤, 侯文泰 碳钢、低合金钢16年大气暴露腐蚀研究[J]. 中国腐蚀与防护学报, 2005, (1): 2- 7
LIANG Cai-feng, HOU Wen-tai Sixteen-year atmospheric corrosion exposure study of steels[J]. Journal of Chinese Society for Corrosion and Protection, 2005, (1): 2- 7
doi: 10.3969/j.issn.1005-4537.2005.01.001
24 曹楚南. 中国材料的自然环境腐蚀[M]. 北京: 化学工业出版社, 2004.
25 BS7608: guide to fatigue design and assessment of steel products [S]. London: British Standards Institution, 2014.
26 BS7910 : guide to methods for assessing the acceptability of flaws in metallic structures [S]. London: British Standards Institution, 2013.
27 BS5400: steel, concrete and composite bridges, part 10: code of practice for fatigue [S]. London: British Standards Institution, 1980 .
28 赵欣欣, 刘晓光, 潘永杰, 等 正交异性钢桥面板纵肋腹板与面板连接构造的疲劳试验研究[J]. 中国铁道科学, 2013, 34 (2): 41- 45
ZHAO Xin-xin, LIU Xiao-guang, PAN Yong-jie, et al Fatigue test study on the joint structure between the deck and longitudinal rib web of orthotropic steel bridge deck[J]. China Railway Science, 2013, 34 (2): 41- 45
doi: 10.3969/j.issn.1001-4632.2013.02.08
29 AASHTO. LRFD: bridge design specification [S]. 3rd edition. Washington, DC: American Association of State Highway and Transportation Officials, 2004.
[1] 王泓晖,房鑫,李德江,刘贵杰. 基于动态贝叶斯网络的变幅载荷下疲劳裂纹扩展预测方法[J]. 浙江大学学报(工学版), 2021, 55(2): 280-288.
[2] 廖小伟,王元清,吴剑国,石永久. 低温环境下十字形非传力角焊缝接头的疲劳性能[J]. 浙江大学学报(工学版), 2020, 54(10): 2018-2026.
[3] 钟雯,丁幼亮,宋永生,曹宝雅,耿方方. 顶板-纵肋焊接细节残余应力的松弛效应[J]. 浙江大学学报(工学版), 2020, 54(1): 83-90.
[4] 黄祖慰,雷俊卿,桂成中,郭殊伦. 斜拉桥正交异性钢桥面板疲劳试验研究[J]. 浙江大学学报(工学版), 2019, 53(6): 1071-1082.
[5] 徐文帅, 杨连枝, 高阳. 二维十次对称压电准晶含Griffith裂纹的平面问题[J]. 浙江大学学报(工学版), 2018, 52(3): 487-496.
[6] 秦洪远, 刘一鸣, 黄丹. 脆性多裂纹扩展问题的近场动力学建模分析[J]. 浙江大学学报(工学版), 2018, 52(3): 497-503.
[7] 宋方远, 谢旭. 锈蚀对钢材低周疲劳性能的影响分析[J]. 浙江大学学报(工学版), 2018, 52(12): 2285-2294.
[8] 张铭奎, 程文明, 刘放. 助力外骨骼负载特征与驱动特征耦合效应[J]. 浙江大学学报(工学版), 2017, 51(4): 807-816.
[9] 李明, 刘扬, 唐雪松. 疲劳裂纹的跨尺度分析[J]. 浙江大学学报(工学版), 2017, 51(3): 524-531.
[10] 廖小伟, 王元清, 宗亮, 施刚. 基于有效缺口应力法的钢桥焊接细节疲劳分析[J]. 浙江大学学报(工学版), 2017, 51(1): 1-8.
[11] 涂志斌,黄铭枫,楼文娟. 风浪耦合作用下桥塔基础体系的极限荷载效应[J]. 浙江大学学报(工学版), 2016, 50(5): 813-821.
[12] 王彤, 谢旭, 唐站站, 沈赤. 考虑复杂应变历史的钢材修正双曲面滞回模型[J]. 浙江大学学报(工学版), 2015, 49(7): 1305-1312.
[13] 狄生奎, 文铖, 叶肖伟. 正交异性钢桥面板结构热点应力有限元分析[J]. 浙江大学学报(工学版), 2015, 49(2): 225-231.
[14] 丁勇, 谢旭, 苟昌焕, 黄剑源. 钢桥交通振动计算方法与动力特性研究[J]. J4, 2012, 46(6): 1107-1114.
[15] 杨兴旺, 毕国丽, 张雪, 等. 激光控制裂纹扩展的路径迭代法及收敛性分析[J]. J4, 2009, 43(11): 2043-2047.