Please wait a minute...
浙江大学学报(工学版)
机械工程     
助力外骨骼负载特征与驱动特征耦合效应
张铭奎, 程文明, 刘放
西南交通大学 机械工程学院,四川 成都 610031
Coupling effect between load characteristics and joint driving characteristics of powered exoskeleton
ZHANG Ming-kui, CHENG Wen-ming, LIU Fang
School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
 全文: PDF(1929 KB)   HTML
摘要:

针对助力外骨骼在蹲起姿态中由不同负载特征所引起的驱动失效问题,为了研究负载特征对关节驱动的影响,建立考虑负载特征的助力外骨骼蹲起姿态动力学模型,研究负载特征与关节驱动特征的耦合关系.基于Lagrange动力学理论及矩阵理论,推导出多刚体系统动力学建模矩阵法,得到助力外骨骼关节驱动力矩及驱动功率方程. 通过人体机器多视觉运动捕捉测量实验及非线性拟合,得到各关节的角位移、角速度及角加速度. 研究结果表明:负载质量与踝关节及膝关节驱动特征为线性强耦合,与髋关节驱动特征为分段线性弱耦合;负载位置与髋关节驱动特征为分段线性强耦合,负载姿态与髋关节驱动特征为分段非线性耦合,负载位置及负载姿态与踝关节及膝关节驱动特征无耦合效应.

Abstract:

Aiming at the drive failure issue of the powered exoskeleton which was caused by different load characteristics in the squat stance, the dynamic model was established by considering the effects of the load characteristics on the powered exoskeleton. The coupling effect between the load characteristics and the joint driving characteristics was discussed in order to analyze the effect of the load characteristics on the joint driving characteristics. The dynamic modeling matrix method of multi-body system was deduced from the Lagrange dynamic theory and matrix theory. The joint driving torque and the driving power of the powered exoskeleton were worked out. The angular displacement, angular velocity and angular acceleration of all joints were obtained from the somatic data acquisition experiment and nonlinear data-fitting. Results showed that there was linear strong coupling between the load mass and the driving characteristics on the ankle and the knee, and there was piecewise linear weak coupling between the load mass and the driving characteristics on the hip. The piecewise linear coupling between the load position and the driving characteristics on the hip was strong, and the coupling between the load posture and the driving characteristics on the hip was nonlinear, but there was no coupling effect between the load position as well as load posture and the driving characteristics on the ankle and the knee.

出版日期: 2017-04-25
CLC:  TH 112  
基金资助:

国家自然科学基金资助项目(51175442).

通讯作者: 程文明,男,教授,博导. ORCID: 0000-0002-9574-9481.     E-mail: wmcheng@home.swjtu.edu.cn
作者简介: 张铭奎(1984—),男,博士生,从事助力外骨骼动力学的研究. ORCID: 0000-0001-5067-2663. E-mail: sunson1688@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

张铭奎, 程文明, 刘放. 助力外骨骼负载特征与驱动特征耦合效应[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2017.04.023.

ZHANG Ming-kui, CHENG Wen-ming, LIU Fang. Coupling effect between load characteristics and joint driving characteristics of powered exoskeleton. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2017.04.023.

[1] ZOSS A B, KAZEROONI H, CHU A. Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX) [J]. IEEE/ASME Transactions on Mechatronics, 2006, 11(2): 128-138.
[2] KAZEROONI H. Hybrid control of the Berkeley lower extremity exoskeleton (BLEEX) [J]. The International Journal of Robotics Research, 2006, 25(5/6): 561-573.
[3] ZOSS A, KAZEROONI H. Design of an electricallyactuated lower extremity exoskeleton [J]. AdvancedRobotics, 2006, 20(9): 967988.
[4] ONEN U, BOTSALI F M, KALYONCU M, et al. Design and actuator selection of a lower extremity exoskeleton [J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(2): 623-632.
[5] DOLLAR A M, HERR H. Lower extremity exoskeletons and active orthoses: challenges and state-of-the-art [J]. IEEE Transactions on Robotics, 2008, 24(1):144-158.
[6] HERR H. Exoskeletons and orthoses: classification, design challenges and future directions [J]. Journal of NeuroEngineering Rehabilitation, 2009, 6(21): 1-9.
[7] GHAN J, STEGER R, KAZEROONI H. Control and system identification for the Berkeley lower extremity exoskeleton (BLEEX) [J]. Advanced Robotics, 2006, 20(9): 989-1014.
[8] KAZEROONI H. Human augmentation and exoskeleton systems in Berkeley [J]. International Journal ofHumanoid Robotics, 2007, 4(3): 575-605.
[9] KAZEROONI H, STEGER R. The Berkeley lowerextremity exoskeleton [J]. Journal of Dynamic Systems, Measurement, and Control, 2006, 128(1): 14-25.
[10] 贾山,王兴松,路新亮,等.基于踝关节处人机位姿误差的外骨骼摆动腿控制[J].机器人,2015,37(04): 403-414.
JIA Shan, WANG Xing-song, LU Xin-liang, et al. Control of the exoskeleton’s swing leg based on the human-machine posture error at ankle joint [J]. Robot, 2015, 37(04): 403-414.
[11] 贾山,韩亚丽,路新亮,等.基于人体特殊步态分析的下肢外骨骼机构设计[J].机器人,2014,36(04): 392-401.
JIA Shan, HAN Yali, LU Xinliang, et al. Design of lower exoskeleton based on analysis on special human gaits [J]. Robot, 2014, 36(04): 392-401.
[12] 韩亚丽,贾山,王兴松.基于人体生物力学的低功耗踝关节假肢的设计与仿真[J].机器人,2013,35(03):276-282.
HAN Ya-li, JIA Shan, WANG Xing-song. Design and simulation of an ankle prosthesis with lower power based on human biomechanics [J]. Robot, 2013,35(03): 276-282.
[13] OTTEN A, VOORT C, STIENEN A, et al. LIMPACT: a hydraulically powered self-aligning upper limb exoskeleton [J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(5): 2285-2298.
[14] ZANOTTO D, AKIYAMA Y, STEGALL P, et al. Knee joint misalignment in exoskeletons for the lower extremities: effects on user’s gait [J]. IEEE Transactions on Robotics, 2015, 31(4): 978-987.
[15] 杨巍,张秀峰,杨灿军,等.基于人机5杆模型的下肢外骨骼系统设计[J].浙江大学学报:工学版,2014(03): 430-435.
YANG Wei, ZHANG Xiu-feng, YANG Can-jun, et al. Design of a lower extremity exoskeleton based on5bar human machine model [J]. Journal of Zhejiang University: Engineering Science, 2014(03): 430-435.
[16] GREGORCZYK K N, HASSELQUIST L, SCHIFFMAN J M, et al. Effects of a lowerbody exoskeleton device on metabolic cost and gait biomechanics during load carriage [J]. Ergonomics, 2010, 53(10):1263-1275.
[17] LEE M, ROAN M, SMITH B. An application of principal compo nent analysis for lower body kinematics between loaded and unloaded walking [J]. Journal of Biomechanics, 2009, 42(14): 2226-2230.
[18] MAJUMDAR D, PAL M S, PRAMANIK A, et al. Kinetic changes in gait during low magnitude military load carriage [J]. Ergonomics, 2013, 56(12):1917-1927.
[19] SCHIFFMAN J M, GREGORCZYK K N, BENSEL C K, et al. The effects of a lower body exoskeleton load carriage assistive device on limits of stability and postural sway [J]. Ergonomics, 2008, 51(10):1515-1529.
[20] LAWRENCE M A, CARLSON L A. Effects of an unstable load on force and muscle activation during a parallel back squat [J]. Journal of Strength and Conditioning Research, 2015, 29(10): 2949-2953.
[21] SAHLI S, REBAI H, ELLEUCH M H, et al. Tibiofemoral joint kinetics during squatting with increasing external load [J]. Journal Sport Rehabilitation, 2008, 17(3): 300-315.
[22] COTTER J A, CHAUDHARI A M, JAMISON S T, et al. Knee joint kinetics in relation to commonly prescribed squat loads and depths [J]. Journal of Strength and Conditioning Research, 2013, 27(7): 1765-1774.

[1] 李伟达,王柱,张虹淼,李娟,顾洪. 床式步态康复训练系统机构设计[J]. 浙江大学学报(工学版), 2021, 55(5): 823-830.
[2] 高阳,方成刚,蒋贤辉. 水泥3D打印喷头中浆体的流动分析[J]. 浙江大学学报(工学版), 2019, 53(3): 420-426.
[3] 王明斗, 陶建峰, 覃程锦, 刘成良. 空间余量最优的拼装机轨迹规划[J]. 浙江大学学报(工学版), 2017, 51(3): 453-460.
[4] 戚玉轩, 邱清盈, 冯培恩, 李立新. 机械结构组合对称概念体系及应用[J]. 浙江大学学报(工学版), 2016, 50(10): 1889-1901.