Please wait a minute...
浙江大学学报(工学版)
机械工程     
比例放大器驱动电路特性分析及控制器设计
徐兵, 苏琦, 张军辉, 陆振宇
浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027
Analysis for drive circuit and improved current controller for proportional amplifier
XU Bing, SU Qi, ZHANG Jun-hui, LU Zhen-yu
State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
 全文: PDF(2436 KB)   HTML
摘要:

由于“反接卸荷”式驱动电路电流的非线性特性,当采用传统比例积分控制器进行电磁铁电流闭环控制时存在零位滞后现象,为了解决这一问题,建立“反接卸荷”式驱动电路的非线性数学模型.通过实验验证了该模型的有效性,分析非线性对电流控制器的设计影响.基于分析结论,提出新型的电流控制器设计方案.该方案的主要特征是通过采用死区跨越和抗饱和控制思路,使控制器快速跨越驱动电路的非线性区域.试验结果表明,该控制器能够有效地消除零位滞后现象.

Abstract:

The lager tracking error will appear when tracking a reference input near zero by the classical proportion-integrated controller because the current character of the inverse discharging drive circuit is nonlinear. A mathematical model was proposed to carefully describe the piecewise nonlinearities in the inverse discharging type drive circuit in order to solve the problem. A test setup was built for the model validation. A novel current controller was designed based on the analysis results. The innovation of this controller includes the dead zone compensation and the anti-wind up design, which is proposed to quickly skip the nonlinear part of the drive circuit. The experimental results show that the controller can effectively eliminate the zero lag.

出版日期: 2017-04-25
CLC:  TH 137  
基金资助:

国家自然科学基金-浙江省两化融合重点资助项目(U1509204);2015年工业转型升级强基工程资助项目(TC150B5C0-29).

作者简介: 徐兵(1971—),男,教授,博导,从事流体传动及控制和机械电子工程的研究. ORCID: 0000-0003-0236-7896. E-mail: bxu@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

徐兵, 苏琦, 张军辉, 陆振宇. 比例放大器驱动电路特性分析及控制器设计[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2017.04.022.

XU Bing, SU Qi, ZHANG Jun-hui, LU Zhen-yu. Analysis for drive circuit and improved current controller for proportional amplifier. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2017.04.022.

[1] 吴根茂.新编实用电液比例技术[M].杭州:浙江大学出版社,2006: 52-56.
[2] CANUTO E, ACUNA B W, AGOSTANI M, et al. Digital current regulator for proportional electro-hydraulic valves with unknown disturbance rejection [J]. Isa Transactions, 2013, 53(4): 909-919.
[3] LIU Guo-ping, XIA Wu-xing, QI Da-wei, et al. Analysis of Dither in PWM control on electro-hydraulic proportional valve [J]. TELKOMNIKA: Indonesian Journal of Electrical Engineering, 2013, 11(11): 6808-6814.
[4] 傅林坚.大流量高响应电液比例阀的设计及关键技术研究[D].杭州:浙江大学,2010: 69-71.
FU Lin-jian. Research on the design and key technology of the electro-hydraulic proportional valve with large flow rate and high responsibility [D]. Hangzhou: Zhejiang University, 2010: 69-71.
[5] 姚磊,邢科礼,金侠杰,等.电液比例放大器的电路设计[J].机床与液压,2008,36(6): 82-84.
YAO Lei, XING Ke-li, JIN Xia-jie, et al. The design of electro-circuit of electro-hydraulic proportion amplifier [J]. Machine Tool and Hydraulics, 2008, 36(6):82-84.
[6] NIE Yong, WANG Qing-feng. Tri-state modulation power driving of electrohydraulic proportional amplifier [J]. Chinese Journal of Mechanical Engineering, 2009(5): 639-644.
[7] ELMER K F, GENTLE C R. A parsimonious model for the proportional control valve [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2001, 215(11): 1357-1363.
[8] OPDENBOSCH P, SADEGH N, BOOK W, et al. Modeling an electro-hydraulic poppet valve [J]. International Journal of Fluid Power, 2009, 10(1): 7-15.
[9] WANG B, SHI G, YU L. Modeling and analysis of the electro-hydraulic proportional valve controlled motor system supplied by variable pressure accumulator [C]∥International Conference on Fluid Power and Mechatronics. Harbin: IEEE, 2015.
[10] CRISTOFORI D, VACCA A. The Modeling of electrohydraulic proportional valves [J]. Journal ofDynamic Systems, Measurement, and Control, 2012, 134(2): 2100821013.
[11] 张德盛.基于ARM的数字式比例放大器的研究[D].杭州:浙江大学,2012: 51-55.
ZHANG Desheng. Research on digital proportional amplifer based on ARM [D]. Hangzhou: ZhejiangUniversity, 2012: 51-55.
[12] CRISTOFORI D, VACCA A. Analysis of the dynamics of a proportional valve operated by an electronic controller [C]∥6th FPNI PhD Symposium. West Lafayette: FPNI Fluid Power Net Publications,2010:199-214.
[13] GALEANI S, TARBOURIECH S, TURNER M, et al. A tutorial on modern antiwindup design [C]∥ European Control Conference (ECC). Budapest: IEEE, 2009: 306-323.
[14] DA SILVA J G, TARBOURIECH S. Antiwindup design with guaranteed regions of stability for discretetime linear systems [J]. Systems and Control Letters, 2006, 55(3): 184-192.
[1] 黄腾逸,周瑾,徐岩,孟凡许. 基于多场耦合分析的磁流变阻尼器建模与结构参数影响[J]. 浙江大学学报(工学版), 2020, 54(10): 2001-2008.
[2] 赵艳龙,李醒飞,杨少波,李洪宇,徐佳毅,林越. 剖面浮标“浮星”可变浮力系统性能研究[J]. 浙江大学学报(工学版), 2020, 54(6): 1240-1248.
[3] 王飞,龚国芳,段理文,秦永峰. 基于XGBoost的隧道掘进机操作参数智能决策系统设计[J]. 浙江大学学报(工学版), 2020, 54(4): 633-641.
[4] 张鹤然,欧阳小平,郭生荣,刘玉龙. 基于回油液阻的压力伺服阀啸叫分析[J]. 浙江大学学报(工学版), 2019, 53(11): 2085-2091.
[5] 陆亮,夏飞燕,訚耀保,原佳阳,郭生荣. 小球式旋转直驱压力伺服阀卡滞机理研究[J]. 浙江大学学报(工学版), 2019, 53(7): 1265-1273.
[6] 曹文翰,龚俊,王宏刚,高贵,祁渊,杨东亚. 盖封密封磨损-热-应力耦合模拟与优化设计[J]. 浙江大学学报(工学版), 2019, 53(2): 258-267.
[7] 欧阳小平, 赵天菲, 李锋, 杨上保, 朱莹, 杨华勇. 飞机液压系统流量负载模拟器的变速积分PI控制[J]. 浙江大学学报(工学版), 2017, 51(6): 1111-1118.
[8] 丁孺琦, 徐兵, 张军辉. 负载口独立控制系统压力速度复合控制的耦合特性[J]. 浙江大学学报(工学版), 2017, 51(6): 1126-1134.
[9] 张强, 魏建华, 时文卓. 采用软溢流模糊PID控制器的液压垫压边力控制[J]. 浙江大学学报(工学版), 2017, 51(6): 1143-1152.
[10] 倪敬, 冯国栋, 王志强, 高殿荣, 许明. 内曲线式端面配流水液压马达的优化设计[J]. 浙江大学学报(工学版), 2017, 51(5): 946-953.
[11] 丁加新, 陈英龙, 周华. 水辅成型浮动芯注射对制品残余壁厚的影响[J]. 浙江大学学报(工学版), 2017, 51(5): 937-945.
[12] 杜睿龙, 陈英龙, 周华, 王佳. 新型高速单柱塞轴向柱塞泵配流机构[J]. 浙江大学学报(工学版), 2016, 50(10): 1902-1910.
[13] 王建森, 刘耀林, 冀宏, 王鹏飞. 非全周开口滑阀运动过程液动力数值计算[J]. 浙江大学学报(工学版), 2016, 50(10): 1922-1926.
[14] 胡小东, 顾临怡, 张范蒙. 应用于数字变量马达的高速开关阀[J]. 浙江大学学报(工学版), 2016, 50(8): 1551-1560.
[15] 权凌霄, 李东, 刘嵩,李长春, 孔祥东. 膨胀环频域特性影响因素分析[J]. 浙江大学学报(工学版), 2016, 50(6): 1065-1072.