Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (10): 2018-2026    DOI: 10.3785/j.issn.1008-973X.2020.10.020
交通工程、土木工程     
低温环境下十字形非传力角焊缝接头的疲劳性能
廖小伟1,2(),王元清2,*(),吴剑国1,石永久2
1. 浙江工业大学 建筑工程学院,浙江 杭州 310023
2. 清华大学 土木工程安全与耐久教育部重点实验室,北京 100084
Fatigue performance of non-load-carrying cruciform fillet-welded joints at low ambient temperature
Xiao-wei LIAO1,2(),Yuan-qing WANG2,*(),Jian-guo WU1,Yong-jiu SHI2
1. College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310023, China
2. Key Laboratory of Civil Engineering Safety and Durability of China Education Ministry, Tsinghua University, Beijing 100084, China
 全文: PDF(1536 KB)   HTML
摘要:

为了研究低温环境下钢桥焊接细节的疲劳行为和性能,以典型的十字形非传力角焊缝接头为对象,开展室温和?60 °C下的高周常幅疲劳试验;基于三维裂纹扩展数值模拟,分析低温对该焊接细节疲劳裂纹扩展寿命的影响机理. 结果表明,该焊接细节的室温和?60 °C条件下试验S-N疲劳寿命未表现出显著区别,初始焊接缺陷裂纹会在细节焊趾处的多个位置同时扩展;由低温环境导致的钢材断裂韧性的降低不会对该焊接细节的疲劳寿命产生明显影响. 虽然低温会增强钢材抵抗疲劳裂纹扩展的能力,但是该焊接细节的疲劳寿命主要受焊接过程产生的多样化初始裂纹缺陷因素控制;建议采用考虑多裂纹耦合扩展的三维裂纹扩展数值模拟来更加精确地预测疲劳裂纹扩展寿命.

关键词: 桥梁钢材十字形焊接接头低温疲劳裂纹扩展断裂力学    
Abstract:

A series of the high-cycle constant-amplitude fatigue tests on the non-load-carrying cruciform fillet-welded joints were conducted at room temperature and ?60 °C in order to analyze the fatigue behavior and performance of the welded joints in the steel bridges. The effect mechanism of the low temperature on the fatigue crack propagation life of those joints was analyzed through three-dimensional crack propagation simulation. The experimental results show the marginal effect due to the low temperatures on the S-N fatigue of the cruciform fillet-welded joints. The initial crack-like defects always propagate simultaneously at several sites along the weld toes. The fatigue crack propagation life is affected negligibly by the deteriorated fracture toughness in steel materials induced by the decreasing temperature. Although the resistance to fatigue crack propagation in steel materials is enhanced by the decreasing temperature, the fatigue life of those fillet-welded joints is still dominated by the diverse initial defects produced during the welding processes. Adopting the three-dimensional multi-crack coupled propagation analysis was recommended to predict more accurately the fatigue life of welded joints in the further research.

Key words: bridge steel    cruciform fillet-welded joint    low–temperature fatigue    crack propagation    fracture mechanics
收稿日期: 2019-10-14 出版日期: 2020-10-28
CLC:  U 441  
基金资助: 国家自然科学基金资助项目(51908501,51678339)
通讯作者: 王元清     E-mail: liaoxiaowei@zjut.edu.cn;wang-yq@mail.tsinghua.edu.cn
作者简介: 廖小伟(1985—),男,博士,从事钢结构的断裂与疲劳研究. orcid.org/0000-0001-8759-1867. E-mail: liaoxiaowei@zjut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
廖小伟
王元清
吴剑国
石永久

引用本文:

廖小伟,王元清,吴剑国,石永久. 低温环境下十字形非传力角焊缝接头的疲劳性能[J]. 浙江大学学报(工学版), 2020, 54(10): 2018-2026.

Xiao-wei LIAO,Yuan-qing WANG,Jian-guo WU,Yong-jiu SHI. Fatigue performance of non-load-carrying cruciform fillet-welded joints at low ambient temperature. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2018-2026.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.10.020        http://www.zjujournals.com/eng/CN/Y2020/V54/I10/2018

图 1  十字形非传力角焊缝接头疲劳细节
图 2  十字形非传力接头角焊缝尺寸均值和标准差
温度 试件编号 Δσ/MPa N/周 裂纹模式 温度 试件编号 Δσ/MPa N/周 裂纹模式
? ? ? ? ? ?60 °C NLL-1 243 180839 1/4椭圆角裂纹
室温 NLR-1 225 207716 边缘贯穿裂纹 ?60 °C NLL-2 225 159224 边缘贯穿裂纹
室温 NLR-2 207 254546 多个半椭圆裂纹 ?60 °C NLL-3 207 308043 边缘贯穿裂纹
室温 NLR-3 189 285802 边缘贯穿裂纹 ?60 °C NLL-4 189 342520 多个半椭圆裂纹
室温 NLR-4 171 310355 边缘贯穿裂纹 ?60 °C NLL-5 171 370673 半椭圆表面裂纹
室温 NLR-5 153 538264 半椭圆表面裂纹 ?60 °C NLL-6 153 423223 边缘贯穿裂纹
室温 NLR-6 135 879401 多个半椭圆裂纹 ?60 °C NLL-7 135 656666 边缘贯穿裂纹
室温 NLR-7 126 1069528 半椭圆表面裂纹 ?60 °C NLL-8 126 1129634 边缘贯穿裂纹
室温 NLR-8 117 1515128 多个半椭圆裂纹 ?60 °C NLL-9 117 1128144 半椭圆表面裂纹
室温 NLR-9 108 1553933 多个半椭圆裂纹 ?60 °C NLL-10 108 1254981 半椭圆表面裂纹
室温 NLR-10 99 2000000 未断 ?60 °C NLL-11 99 1363262 半椭圆表面裂纹
表 1  十字形非传力角焊缝接头的疲劳试验结果
图 3  低温疲劳试验装置
图 4  试验后的室温和低温有效疲劳试件
图 5  室温和低温疲劳试件断口裂纹扩展形态
图 6  室温和 −60 °C下的疲劳 S-N曲线试验数据
图 7  十字形非传力角焊缝接头的三维裂纹扩展有限元模型
图 8  应力强度因子数值解与解析解的对比
图 9  不同裂纹类型的应力强度因子计算
图 10  十字接头的预测疲劳寿命与试验结果对比
图 11  断裂韧性对十字接头疲劳裂纹扩展寿命的影响
图 12  Paris参数对十字接头疲劳裂纹扩展寿命的影响
1 YE X W, SU Y H, HAN J P A state-of-the-art review on fatigue life assessment of steel bridges[J]. Mathematic Problems in Engineering, 2014, 3: 1- 13
2 王元清, 廖小伟, 贾单锋, 等 钢结构的低温疲劳性能研究进展综述[J]. 钢结构研究进展, 2018, 20 (1): 1- 11
WANG Yuan-qing, LIAO Xiao-wei, JIA Dan-feng, et al Overview of research progress for the low-temperature fatigue performance of steel structures[J]. Progress in Steel Building Structures, 2018, 20 (1): 1- 11
3 刘晓光 铁路钢桥疲劳研究进展[J]. 铁道建筑, 2015, 10: 19- 25
LIU Xiao-guang Development of fatigue research on railway steel bridges[J]. Railway Engineering, 2015, 10: 19- 25
4 廖小伟, 王元清, 宗亮, 等 基于有效缺口应力法的钢桥焊接细节疲劳分析[J]. 浙江大学学报: 工学版, 2017, 50 (1): 1- 8
LIAO Xiao-wei, WANG Yuan-qing, ZONG Liang, et al Fatigue analysis of typical welded joints of steel bridges using effective notch stress approach[J]. Journal of Zhejiang University: Engineering Science, 2017, 50 (1): 1- 8
5 郭宏超, 毛宽宏, 万金怀, 等 高强度钢材疲劳性能研究进展[J]. 建筑结构学报, 2019, 40 (4): 17- 28
GUO Hong-chao, MAO Kuan-hong, WAN Jin-huai, et al Research progress on fatigue properties of high strength steels[J]. Journal of Building Structures, 2019, 40 (4): 17- 28
6 王元清 钢结构在低温下脆性破坏研究概述[J]. 钢结构, 1994, 9 (4): 217- 221
WANG Yuan-qing Survey of investigation about brittle fracture of steel structure under low temperature[J]. Steel Construction, 1994, 9 (4): 217- 221
7 STEPHENS R I, CHUNG J H, GLINKA G. Low temperature fatigue behavior of steels: a review [C]// 39th Annual Earthmoving Industry Conference. Iowa: SAE, 1979: 1892-1904.
8 王元清, 廖小伟, 张子富, 等 输电线铁塔钢材的低温力学和冲击韧性试验[J]. 哈尔滨工业大学学报, 2015, 47 (12): 70- 74
WANG Yuan-qing, LIAO Xiao-wei, ZHANG Zi-fu, et al Experimental study on mechanical properties and impact toughness of steel for transmission line towers at low temperatures[J]. Journal of Harbin Institute of Technology, 2015, 47 (12): 70- 74
9 LIAO X W, WANG Y Q, QIAN X D, et al Fatigue crack propagation for Q345qD bridge steel and its butt welds at low temperatures[J]. Fatigue and Fracture of Engineering Materials and Structures, 2018, 41: 675- 687
doi: 10.1111/ffe.12727
10 SHUL’GINOV B S, MATVEYEV V V Impact fatigue of low-alloy steels and their welded joints at low temperature[J]. International Journal of Fatigue, 1997, 19 (8/9): 621- 627
11 KANG K W, GOO B C, KIM J H, et al Experimental investigation on static and fatigue behavior of welded SM490A steel under low temperature[J]. Steel Structures, 2009, 9 (1): 85- 91
doi: 10.1007/BF03249483
12 BRIDGES R, ZHANG S, SHAPOSHNIKOV V Experimental investigation on the effect of low temperatures on the fatigue strength of welded steel joints[J]. Ships and Offshore Structures, 2012, 7 (3): 311- 319
doi: 10.1080/17445302.2011.563550
13 JEONG D, PARK T, LEE J, et al Ambient and cryogenic S-N fatigue behavior of Fe15Mn steel and its weld[J]. Metals and Materials International, 2015, 21 (3): 453- 460
doi: 10.1007/s12540-015-4397-7
14 LI Z R, ZHANG D C, WU H Y, et al Fatigue properties of welded Q420 high strength steel at room and low temperatures[J]. Construction and Building Materials, 2018, 189: 955- 966
doi: 10.1016/j.conbuildmat.2018.07.231
15 钢结构焊接规范: GB50661-2011 [S]. 北京: 中国建筑工业出版社, 2011.
16 Eurocode 3: Design of steel structures - Part 1-9: Fatigue: BS EN 1993-1-9: 2005 [S]. London: British Standards Institution, 2005.
17 WALTERS C L, ALVARO A, MALJAARS J The effect of low temperatures on the fatigue crack growth of S460 structural steel[J]. International Journal of Fatigue, 2016, 82: 110- 118
doi: 10.1016/j.ijfatigue.2015.03.007
18 AYGüL M, AL-EMRANI M, BARSOUM Z, et al Investigation of distortion-induced fatigue cracked welded details using 3D crack propagation analysis[J]. International Journal of Fatigue, 2014, 64: 54- 66
doi: 10.1016/j.ijfatigue.2014.02.014
19 ZONG L, SHI G, WANG Y Q, et al Investigation on fatigue behaviour of load-carrying fillet welded joints based on mix-mode crack propagation analysis[J]. Archives of Civil and Mechanical Engineering, 2017, 17: 677- 686
doi: 10.1016/j.acme.2017.01.009
20 刘益铭, 张清华, 崔闯, 等 正交异性钢桥面板三维疲劳裂纹扩展数值模拟方法[J]. 中国公路学报, 2016, 29 (7): 89- 95
LIU Yi-ming, ZHANG Qing-hua, CUI Chuang, et al Numerical simulation method for 3D fatigue crack propagation of orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2016, 29 (7): 89- 95
21 王春生, 翟慕赛, 唐友明, 等 钢桥面板疲劳裂纹耦合扩展机理的数值断裂力学模拟[J]. 中国公路学报, 2017, 30 (3): 82- 95
WANG Chun-sheng, ZHAI Mu-sai, TANG You-ming, et al Numerical fracture mechanical simulation of fatigue crack coupled propagation mechanism for steel bridge deck[J]. China Journal of Highway and Transport, 2017, 30 (3): 82- 95
22 PARIS P, ERDOGAN F A critical analysis of crack propagation laws[J]. Journal of Basic Engineering, 1963, 85 (4): 528- 533
doi: 10.1115/1.3656900
23 Franc3D, Reference manual for version 7 [R]. New York: Fracture Analysis Consultants, Inc., 2016.
24 TANAKA K Fatigue crack propagation from a crack inclined to the cyclic tensile axis[J]. Engineering Fracture Mechanics, 1974, 6 (3): 493- 498
doi: 10.1016/0013-7944(74)90007-1
25 ERDOGAN F, SIH G C On the crack extension in plates under plane loading and transverse shear[J]. Journal of Basic Engineering, 1963, 85 (4): 519- 525
doi: 10.1115/1.3656897
26 RADAJ D, SONSINO C M, FRICKE W. Fatigue assessment of welded joints by local approaches [M]. Cambridge: Woodhead Publishing, 2006.
27 CHAPETTI M D, JAUREGUIZAHAR L F Fatigue behavior prediction of welded joints by using an integrated fracture mechanics approach[J]. International Journal of Fatigue, 2012, 43: 43- 53
doi: 10.1016/j.ijfatigue.2012.02.004
28 LASSEN T, RECHO N Proposal for a more accurate physically based S-N curve for welded steel joints[J]. International Journal of Fatigue, 2009, 31 (1): 70- 78
doi: 10.1016/j.ijfatigue.2008.03.032
29 王元清, 廖小伟, 周晖, 等 基于SINTAP-FAD方法的含裂纹缺陷钢结构构件安全性评定研究[J]. 工程力学, 2017, 34 (5): 42- 51
WANG Yuan-qing, LIAO Xiao-wei, ZHOU Hui, et al Safety assessment of steel structure component with crack defects using SINTAP-FAD method[J]. Engineering Mechanics, 2017, 34 (5): 42- 51
30 LIAO X W, WANG Y Q, WANG Z Y, et al Effect of low temperatures on constant amplitude fatigue properties of Q345qD steel butt-welded joints[J]. Engineering Failure Analysis, 2019, 105: 597- 609
doi: 10.1016/j.engfailanal.2019.07.006
31 LEANDER J, AYGüL M, NORLIN B Refined fatigue assessment of joints with welded in-plane attachments by LEFM[J]. International Journal of Fatigue, 2013, 56: 25- 32
doi: 10.1016/j.ijfatigue.2013.07.013
32 Guide to methods for assessing the acceptability of flaws in metallic structures: BS7910 [S]. London: British Standards Institution, 2005.
[1] 王泓晖,房鑫,李德江,刘贵杰. 基于动态贝叶斯网络的变幅载荷下疲劳裂纹扩展预测方法[J]. 浙江大学学报(工学版), 2021, 55(2): 280-288.
[2] 黄祖慰,雷俊卿,桂成中,郭殊伦. 斜拉桥正交异性钢桥面板疲劳试验研究[J]. 浙江大学学报(工学版), 2019, 53(6): 1071-1082.
[3] 秦洪远, 刘一鸣, 黄丹. 脆性多裂纹扩展问题的近场动力学建模分析[J]. 浙江大学学报(工学版), 2018, 52(3): 497-503.
[4] 欧阳小平, 刘玉龙, 薛志全, 郭生荣, 周清和, 杨华勇. null[J]. 浙江大学学报(工学版), 2017, 51(7): 1361-1367.
[5] 李明, 刘扬, 唐雪松. 疲劳裂纹的跨尺度分析[J]. 浙江大学学报(工学版), 2017, 51(3): 524-531.
[6] 刘洪波, 翟长海, 谢礼立, 邵永松. 腹板连接节点焊缝应力强度因子的参数分析[J]. J4, 2011, 45(6): 1108-1112.
[7] 蒋梅玲, 金贤玉, 田野, 金南国. 基于断裂力学和损伤理论的混凝土开裂模型[J]. J4, 2011, 45(5): 948-953.
[8] 杨兴旺, 毕国丽, 张雪, 等. 激光控制裂纹扩展的路径迭代法及收敛性分析[J]. J4, 2009, 43(11): 2043-2047.
[9] 周迅 向馗 俞小莉. D-Markov模型在疲劳裂纹扩展模式识别中的应用[J]. J4, 2008, 42(3): 549-552.
[10] 王海龙 金伟良 孙晓燕. 围压作用下混凝土的静动力细观破坏机理[J]. J4, 2007, 41(7): 1159-1162.
[11] 周迅 俞小莉. 曲轴疲劳裂纹扩展速率测量的扫频法[J]. J4, 2007, 41(11): 1886-1892.
[12] 刘洪波 谢礼立 邵永松. 钢框架节点焊缝应力强度因子的参数分析[J]. J4, 2007, 41(1): 40-43.
[13] 陶伟明 毕国丽 章惠全 武藤睦治. 钠钙玻璃板激光热应力切割过程的有限元仿真[J]. J4, 2005, 39(9): 1423-1426.
[14] 焦磊 李贵军 王乐勤. 加氢反应器接管裂纹的疲劳扩展分析[J]. J4, 2005, 39(9): 1455-1460.
[15] 王秋成 柯映林 邢鸿燕. 板类构件内部残余应力测试技术研究[J]. J4, 2005, 39(3): 381-384.