Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (10): 2027-2037    DOI: 10.3785/j.issn.1008-973X.2020.10.021
交通工程、土木工程     
基于超短栓钉的钢-超薄UHPC组合桥面性能
王立国1,2(),邵旭东1,2,*(),曹君辉1,2,陈玉宝1,2,何广1,2,王洋1,2
1. 湖南大学 土木工程学院,湖南 长沙 410082
2. 湖南大学 风工程与桥梁工程湖南省重点实验室,湖南 长沙 410082
Performance of steel-ultrathin UHPC composite bridge deck based on ultra-short headed studs
Li-guo WANG1,2(),Xu-dong SHAO1,2,*(),Jun-hui CAO1,2,Yu-bao CHEN1,2,Guang HE1,2,Yang WANG1,2
1. School of Civil Engineering, Hunan University, Changsha 410082, China
2. Hunan Provincial Laboratory for Wind Engineering and Bridge Engineering, Hunan University, Changsha 410082, China
 全文: PDF(1877 KB)   HTML
摘要:

为了满足对自重敏感的大跨桥梁钢桥面的翻修与加固需求,提出采用超短栓钉作为连接件的钢-超薄UHPC轻型组合桥面结构(简称“新超薄体系”). 通过钢-超薄UHPC组合板负弯矩试验,研究关键设计参数对超薄UHPC层抗裂性能的影响. 试验结果表明:当UHPC最大裂缝宽度小于0.15 mm时,裂缝宽度的增长近似呈线性,在钢筋屈服以后,裂缝宽度迅速增大;配筋率和钢筋直径对名义开裂应力的影响较大. 基于试验结果,分析已有的裂缝宽度计算公式,确定钢-超薄UHPC组合板裂缝宽度的建议计算公式. 以某特大跨径悬索桥为工程背景,进行整体和局部有限元分析,论证了方案应用于实际工程的可行性. 计算结果表明:钢-超薄UHPC组合桥面的自重与常规60 mm厚的钢桥面铺装基本持平,主缆和吊索内力变化小于3.0%;钢桥面(OSD)各典型疲劳细节的应力幅值降低了10.1%~52.0%,且均小于200万次疲劳强度;UHPC层中最大拉应力为8.4 MPa,远小于试验得到的名义开裂应力.

关键词: 桥梁工程超薄体系有限元分析轻型组合桥面疲劳    
Abstract:

A new steel-ultrathin UHPC lightweight composite deck (named as new LWCD for short) was proposed by using ultra-short headed studs in order to meet the demanding requirements in retrofitting and strengthening steel deck systems for long-span flexible bridges. The experimental tests were performed for the new LWCD via steel-ultrathin UHPC composite slab specimens, and the influence of key design parameters on the anti-cracking behavior of the specimens was analyzed. The test results show that the cracks widened approximately linearly with the increasing load when the maximum crack width was less than 0.15 mm. The maximum crack width in UHPC rapidly increased when the steel reinforcement yielded. The nominal cracking stress of UHPC was significantly affected by the reinforcement ratio and rebar diameter. Different methods of predicting the crack width in UHPC were compared based on the test results, and the proposed formula for calculating the crack width of steel-ultrathin UHPC composite slab was determined. Global and local finite element (FE) analyses were performed based on a long-span suspension bridge to validate the feasibility of the proposed new LWCD. The analysis results show that the self-weight of the new LWCD is comparable to that of the original 60 mm asphalt overlay. The internal forces in main cables and suspenders are increased less than 3.0%. The stress ranges in typical fatigue-prone details of the orthotropic steel deck (OSD) are reduced by 10.1%-52.0%, and the stress ranges in the OSD are all below the corresponding fatigue strengths (under 2 million cycles). The maximum tensile stress in UHPC caused by design loads was 8.4 MPa, much less than the nominal cracking strength obtained in the experimental test.

Key words: bridge engineering    ultra-thin system    finite element analysis    light-weight composite bridge deck    fatigue
收稿日期: 2019-12-30 出版日期: 2020-10-28
CLC:  U 443  
基金资助: 国家重点研发计划资助项目(2018YFC0705400);国家自然科学基金资助项目(51778223,51978259);国家自然科学青年基金资助项目(51708200);湖南省科技重大专项资助项目(2017SK1010);广东省交通运输厅科技资助项目(2013-02-036)
通讯作者: 邵旭东     E-mail: wlg120524@163.com;shaoxd@vip.163.com
作者简介: 王立国(1996—),男,硕士生,从事桥梁结构的理论研究. orcid.org/0000-0002-3603-5075. E-mail: wlg120524@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王立国
邵旭东
曹君辉
陈玉宝
何广
王洋

引用本文:

王立国,邵旭东,曹君辉,陈玉宝,何广,王洋. 基于超短栓钉的钢-超薄UHPC组合桥面性能[J]. 浙江大学学报(工学版), 2020, 54(10): 2027-2037.

Li-guo WANG,Xu-dong SHAO,Jun-hui CAO,Yu-bao CHEN,Guang HE,Yang WANG. Performance of steel-ultrathin UHPC composite bridge deck based on ultra-short headed studs. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2027-2037.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.10.021        http://www.zjujournals.com/eng/CN/Y2020/V54/I10/2027

构件编号 ${h_{\rm{s}}}$/mm $\phi $/mm $d$/mm $\rho $/%
S12-33-6 12 6 33 2.4
S12-33-8 12 8 33 4.3
S12-50-8 12 8 50 2.9
S12-50-10 12 10 50 4.5
S20-33-6 20 6 33 2.4
S20-33-8 20 8 33 4.3
S20-50-8 20 8 50 2.9
表 1  钢-超薄UHPC组合板设计参数
图 1  S12-33-8构件构造示意图
图 2  钢筋应变片布置图
图 3  组合板受弯试验加载图
图 4  组合板荷载-挠度曲线
构件编号 ${F_{\rm{e}}}$/kN ${F_{{\rm{cr}}}}$/kN ${F_{\rm{u}}}$/kN
S12-33-6 7.3 16.1 37.7
S12-33-8 7.8 19.4 47.9
S12-50-8 7.6 16.1 39.0
S12-50-10 8.3 17.2 47.2
S20-33-6 8.0 23.5 88.0
S20-33-8 9.4 29.1 97.8
S20-50-8 8.7 23.4 88.8
表 2  组合板受弯试验结果
图 5  组合板的最终裂缝形态
图 6  部分组合板的荷载-最大裂缝宽度曲线
图 7  截面换算示意图
试件编号 ${F_{{\rm{cr}}}}$/kN ${\sigma _{\rm{c}}}$/MPa
S12-33-6 16.1 25.3
S12-33-8 19.4 30.5
S12-50-8 16.1 25.9
S12-50-10 17.2 27.2
S20-33-6 23.5 27.5
S20-33-8 29.1 33.0
S20-50-8 23.4 27.3
表 3  名义开裂应力计算结果
图 8  部分构件钢筋应力图
图 9  
图 9  实测与计算裂缝宽度对比图
铺装方案 铺装结构 $\gamma_{\rm{c} }$/(kN·m?3
方案1(原铺装) 60 mm 环氧沥青铺装层 环氧沥青:24
方案2-1 35 mm UHPC+15 mm TPO TPO:20
方案2-2 35 mm UHPC+30 mm SMA SMA:24
方案3 45 mm UHPC+30 mm SMA UHPC:27
表 4  整体计算铺装方案
图 10  Midas整体计算有限元模型
铺装方案 ${F_{\rm{C}}}$/kN $P_{F_{\rm{C}} }$/% ${F_{\rm{S}}}$/kN $P_{F_{\rm{S}} }$/%
方案1 187696.6 ? 1030.7 ?
方案2-1 184338.7 ?1.8 1003.5 ?2.6
方案2-2 191561.9 2.1 1062.1 3.0
方案3 196179.7 4.5 1099.7 6.7
表 5  Midas整体计算结果
图 11  钢桥面典型疲劳细节
细节编号 $\Delta6_{\rm{c} }$1)/MPa 评定方法
注:1)表中的疲劳强度已考虑疲劳抗力分项系数.
细节① 60.9 名义应力法
细节② 60.9 名义应力法
细节③ 69.6 名义应力法
细节④ 69.6 名义应力法
细节⑤ 60.9 名义应力法
细节⑥ 95.7 名义应力法
表 6  钢桥面连接细节疲劳强度
图 12  钢箱梁节段模型
图 13  有限元模型关键位置网格细化
图 14  疲劳荷载——标准疲劳车型Ⅲ
图 15  静力荷载——标准静载车辆
图 16  局部计算加载工况
细节编号 $\sigma_{{\rm{max}}}^{\rm{s}}$/MPa $\Delta\sigma_{\rm{c} }$/
MPa
$P_{\rm{\sigma}}$/
%
纯钢梁 超薄体系
细节① 65.2 31.3 60.9 52.0
细节② 62.0 40.8 60.9 34.2
细节③ 83.3 64.7 69.6 22.3
细节④ 49.0 38.81 69.6 20.8
细节⑤ 43.7 39.3 60.9 10.1
细节⑥ 43.4 36.7 95.7 15.4
表 7  钢结构各疲劳细节应力幅
应力方向 ${\sigma _{\rm{g}}}$/MPa ${\sigma _{\rm{L}}}$/MPa $\sigma_{{\rm{max}}} $/MPa
顺桥向 2.8 6.6 9.4
横桥向 ? 8.4 8.4
表 8  UHPC层应力计算结果
1 王春生, 冯亚成 正交异性钢桥面板的疲劳研究综述[J]. 钢结构, 2009, 24 (9): 10- 13
WANG Chun-sheng, FENG Ya-cheng Review of fatigue research for orthotropic steel bridge decks[J]. Steel Construction, 2009, 24 (9): 10- 13
doi: 10.3969/j.issn.1007-9963.2009.09.003
2 FISHER J W, BARSOM J M Evaluation of cracking in the rib-to-deck welds of the Bronx-Whitestone Bridge[J]. Journal of Bridge Engineering, 2016, 21 (3): 04015065.1- 04015065.10
3 ROMAN W Empirical design rules for effective utilization of orthotropic decks[J]. Journal of Bridge Engineering, 2014, 19 (2): 152- 158
doi: 10.1061/(ASCE)BE.1943-5592.0000462
4 邵旭东. 钢-超高性能混凝土轻型组合桥梁结构[M]. 北京: 人民交通出版社, 2015.
5 CAO J H, SHAO X D, ZHANG Z, et al Retrofit of an orthotropic steel deck with compact reinforced reactive powder concrete[J]. Structure and Infrastructure Engineering, 2015, 12 (3): 1- 19
6 丁楠. 超高性能混凝土对轻型组合桥面结构疲劳寿命的影响研究[D]. 长沙: 湖南大学, 2014.
DING Nan. Study on influence of ultra-high performance concrete on light-weighted composite bridge deck [D]. Changsha: Hunan University, 2014.
7 SHAO X D, YI D, HUANG Z, et al Basic performance of the composite deck system composed of orthotropic steel deck and ultra-thin RPC layer[J]. Journal of Bridge Engineering, 2013, 18 (5): 417- 428
doi: 10.1061/(ASCE)BE.1943-5592.0000348
8 黄卫, 刘振清 大跨径钢桥面铺装设计理论与方法研究[J]. 土木工程学报, 2005, (1): 51- 59
HUANG Wei, LIU Zhen-qing Research on theory and method of long-span steel bridges deck surfacing design[J]. China Civil Engineering Journal, 2005, (1): 51- 59
doi: 10.3321/j.issn:1000-131X.2005.01.007
9 SHAO X D, QU W T, CAO J H Static and fatigue properties of the Steel-UHPC lightweight composite bridge deck with large U ribs[J]. Journal of Constructional Steel Research, 2018, 148: 491- 507
doi: 10.1016/j.jcsr.2018.05.011
10 邵旭东, 张松涛, 张良, 等 钢-超薄UHPC层轻型组合桥面性能研究[J]. 重庆交通大学学报: 自然科学版, 2016, 35 (1): 22- 27
SHAO Xu-dong, ZHANG Song-tao, ZHANG Liang, et al Performance of light-type composite bridge dec-k system with steel and ultra-thin UHPC layer[J]. Journal of Chongqing Jiaotong University: Natural Science, 2016, 35 (1): 22- 27
11 国家质量监督检验检疫总局. 电弧螺柱焊用圆柱头焊钉: GB/T 10433-2002 [S]. 北京: 中国标准出版社, 2002: 1-5.
12 吴冲. 现代钢桥[M]. 北京: 人民交通出版社, 2006.
13 邵旭东, 罗军, 曹君辉, 等 钢-UHPC轻型组合桥面结构试验及裂缝宽度计算研究[J]. 土木工程学报, 2019, 52 (3): 61- 75
SHAO Xu-dong, LUO Jun, CAO Jun-hui, et al Experimental study and crack width calculation of steel-UHPC lightweight composite deck structure[J]. China Civil Engineering Journal, 2019, 52 (3): 61- 75
14 罗军, 邵旭东, 曹君辉, 等 钢-超高性能混凝土组合板开裂荷载正交试验及计算方法[J]. 浙江大学学报:工学版, 2020, 54 (5): 909- 920
LUO Jun, SHAO Xu-dong, CAO Jun-hui, et al Orthogonal test and calculation method of cracking load of steel-ultra-high performance concrete composite specimen[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (5): 909- 920
15 李文光, 邵旭东, 方恒, 等 钢-UHPC组合板受弯性能的试验研究[J]. 土木工程学报, 2015, 48 (11): 93- 102
LI Wen-guang, SHAO Xu-dong, FANG Heng, et al Experimental study on flexural behavior of steel-UHPC composite slabs[J]. China Civil Engineering Journal, 2015, 48 (11): 93- 102
16 AFGC, SETRA. Ultra-high performance fiber-reinforced concrete (UHPFRC) [S]. Paris: AFGC& SETRA Working Group, 2016.
17 RAFIEE J. Computer modeling and investigation on the steel corrosion in sacked ultra high performance concrete [M]. Kassel: Kassel University Press, 2012.
18 Model code for concrete structures: MC2010 [S]. Switzerland: The International Federation for Structural Concrete, 2012.
19 邵旭东, 曲宛桐, 曹君辉, 等 带大U肋的轻型组合桥面板基本力学性能[J]. 中国公路学报, 2018, 31 (8): 94- 103
SHAO Xu-dong, QU Wan-tong, CAO Jun-hui, et al Fundamental mechanical performance of lightweight composite bridge deck with large U-ribs[J]. China Journal of Highway and Transport, 2018, 31 (8): 94- 103
doi: 10.3969/j.issn.1001-7372.2018.08.010
20 詹健, 邵旭东, 曲宛桐, 等 钢-STC轻型组合桥面结构多参数分析[J]. 公路交通科技, 2018, 35 (5): 73- 81
ZHAN Jian, SHAO Xu-dong, QU Wan-tong, et al Multi-parametric analysis on steel-STC lightweight composite bridge deck[J]. Journal of Highway and Transportation Research and Development, 2018, 35 (5): 73- 81
21 JONG F B P. Overview fatigue phenomenon in orthotropic bridge decks in the Netherlands [C]// Proceedings of Orthotropic Bridge Decks. Sacramento: [s. n.], 2004: 489-512.
[1] 王泓晖,房鑫,李德江,刘贵杰. 基于动态贝叶斯网络的变幅载荷下疲劳裂纹扩展预测方法[J]. 浙江大学学报(工学版), 2021, 55(2): 280-288.
[2] 余文韬,谢旭,成程. 焊接构造对T型接头超低周疲劳性能的影响[J]. 浙江大学学报(工学版), 2021, 55(1): 31-37.
[3] 沈国辉,包玉南,郭勇,宋刚,王轶文. 输电线顺线路方向风荷载及分配模式[J]. 浙江大学学报(工学版), 2020, 54(9): 1658-1665.
[4] 楼恺俊,俞峰,夏唐代,马健. 黏土中地下连续墙支护结构的稳定性分析[J]. 浙江大学学报(工学版), 2020, 54(9): 1697-1705.
[5] 张征,张豪,柴灏,吴化平,姜少飞. 变刚度多稳态复合材料结构设计与性能分析[J]. 浙江大学学报(工学版), 2020, 54(7): 1341-1346.
[6] 罗军,邵旭东,曹君辉,樊伟,裴必达. 钢-超高性能混凝土组合板开裂荷载正交试验及计算方法[J]. 浙江大学学报(工学版), 2020, 54(5): 909-920.
[7] 陈勇,李泳全,谢重磊,钱匡亮,张叶胜,程鹏允,叶轩佐. 钢管束剪力墙约束下砌体结构推覆试验研究[J]. 浙江大学学报(工学版), 2020, 54(3): 499-511.
[8] 王一博,丁会明,郑津洋,陆群杰,王振宇,徐平,陈志伟. 预应变亚稳态奥氏体不锈钢(S30408)深冷低周疲劳性能[J]. 浙江大学学报(工学版), 2020, 54(11): 2190-2195.
[9] 廖小伟,王元清,吴剑国,石永久. 低温环境下十字形非传力角焊缝接头的疲劳性能[J]. 浙江大学学报(工学版), 2020, 54(10): 2018-2026.
[10] 龙江兴,金伟良,张军,毛江鸿,崔磊. 电化学修复后钢筋疲劳性能试验研究[J]. 浙江大学学报(工学版), 2020, 54(1): 64-72.
[11] 童水光,苗嘉智,童哲铭,何顺,相曙锋,帅向辉. 内燃叉车车架静动特性有限元分析及优化[J]. 浙江大学学报(工学版), 2019, 53(9): 1637-1646.
[12] 戴显荣,王路,王昌将,王晓阳,沈锐利. 多塔悬索桥全竖向摩擦板式抗滑方案[J]. 浙江大学学报(工学版), 2019, 53(9): 1697-1703.
[13] 赵俭斌,席义博,王振宇. 海上风机单桩基础疲劳损伤计算方法[J]. 浙江大学学报(工学版), 2019, 53(9): 1711-1719.
[14] 黄祖慰,雷俊卿,桂成中,郭殊伦. 斜拉桥正交异性钢桥面板疲劳试验研究[J]. 浙江大学学报(工学版), 2019, 53(6): 1071-1082.
[15] 王珏,季文玉,李旺旺. 预应力活性粉末混凝土-普通混凝土叠合梁疲劳全过程分析[J]. 浙江大学学报(工学版), 2019, 53(5): 917-924.