Please wait a minute...
浙江大学学报(工学版)
水利工程、土木工程     
正交异性钢桥面板结构热点应力有限元分析
狄生奎1, 文铖1, 叶肖伟2
1. 兰州理工大学 防震减灾研究所,甘肃 兰州 730050;2. 浙江大学 建筑工程学院,浙江 杭州 310058
Finite element analysis of structural hot-spot stress for orthotropic steel bridge deck
DI Sheng-kui1, WEN Cheng1, YE Xiao-wei2
1. Institute of Earthquake Protection and Disaster Mitigation, Lanzhou University of Technology, Lanzhou 730050, China; 2. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
 全文: PDF(2193 KB)   HTML
摘要:

以正交异性钢桥面板焊接节点为研究对象,对焊接节点焊趾处不同的结构热点应力确定方法进行比较分析.利用有限元软件ANSYS分别建立焊接节点的实体单元和壳单元有限元模型,在焊趾附近区域共划分7种网格尺寸,分别采用直接提取法、表面外推法和结构应力法计算正交异性钢桥面板焊接节点焊趾处的结构热点应力,比较分析不同方法计算结果的精度及对网格尺寸和单元类型的敏感性.研究结果表明,对于不同网格尺寸和单元类型的有限元模型,直接提取法和表面外推法获得的结构热点应力离散性较大,结构应力法计算的结构热点应力具有较好的一致性.

Abstract:

A comparative study was conducted to determine the structural hot-spot stress at the weld toe of the welded joint in the orthotropic steel bridge deck by use of different methods. The finite element models of the welded joint were established by the finite element software ANSYS with the solid element and the shell element, respectively. Seven types of the mesh size were divided adjacent to the weld toe zone. The structural hot-spot stress at the weld toe of the welded joint in the orthotropic steel bridge deck was calculated using the direct extraction method, the surface extrapolation method, and the structural stress method. The results obtained from different methods were compared in respect of the accuracy and the sensitivity with the mesh size and the element type. The achieved results reveal that when the finite element models are constructed by use of different mesh sizes and element types, the structural hot-spot stress calculated by the direct extraction method and the surface extrapolation method has significant discreteness, while the structural hot-spot stress derived from the structural stress method has good consistency.

出版日期: 2015-02-01
:  U 441  
基金资助:

国家自然科学基金资助项目(51308493);教育部高等学校博士学科点专项科研基金资助项目(20130101120080);中央高校基本科研业务费专项资金资助项目(2013QNA4023)

通讯作者: 叶肖伟,男,副教授,博导     E-mail: cexwye@zju.edu.cn
作者简介: 狄生奎(1971—),男,教授,博导,从事土木工程防灾减灾方面的研究.E-mail: disk@lut.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

狄生奎, 文铖, 叶肖伟. 正交异性钢桥面板结构热点应力有限元分析[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.02.005.

DI Sheng-kui, WEN Cheng, YE Xiao-wei. Finite element analysis of structural hot-spot stress for orthotropic steel bridge deck. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.02.005.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.02.005        http://www.zjujournals.com/eng/CN/Y2015/V49/I2/225

[1] BSI. BS5400. steel, concrete and composite bridges, part 10: code of practice for fatigue [S]. London: British Standards Institution, 1980.
[2] AASHTO. Guide specifications for fatigue evaluation of existing steel bridges [S]. Washington DC: American Association of State Highway and Transportation Officials, 1990.
[3] ATZORI B, MENEGHETTI G. Fatigue strength of fillet welded structural steels: finite elements, strain gauges and reality [J]. International Journal of Fatigue, 2001, 23(8): 713-721.
[4] TAYLOR D, BARRETT N, LUCANO G. Some new methods for predicting fatigue in welded joints [J]. International Journal of Fatigue, 2002, 24(5): 509-518.
[5] DNV-RP-C206. Fatigue methodology of offshore ships [S]. Norway: Det Norske Veritas, 2006.
[6] AYGUL M, AL-EMRANI M, URUSHADZE S. Modelling and fatigue life assessment of orthotropic bridge deck details using FEM [J]. International Journal of Fatigue, 2012, 40(1): 129-142.
[7] DONG P. A structural stress definition and numerical implementation for fatigue analysis of welded joints [J]. International Journal of Fatigue, 2001, 23(10): 865-876.
[8] SONSINO C M, RADAJ D, BRANDT U, et al. Fatigue assessment of welded joints in AIMg 4.5 Mn aluminium alloy(AA5083) by local approaches [J]. International Journal of Fatigue, 1999, 21(9): 985-999.
[9] IIW. Fatigue analysis of welded components-designer’s guide to the structural hot-spot stress approach [S]. Cambridge: International Institute of Welding, 2006.
[10] VAN WINGERDE A M, JEFFREY A P, WARDENIER J. Criteria for the fatigue assessment of hollow structural section connections [J]. Journal of Constructional Steel Research, 1995, 35(1): 71-115.
[11] TVEITEN B W, BERGE S, WANG X Z. Fatigue assessment of aluminum ship details by hotspot stress approach [J]. Journal of Offshore Mechanics and Arctic Engineering, 2013, 135(4): 110.
[12] DONG P, HONG J K, OSAGE D A, et al. Master S-N curve approach for fatigue evaluation of welded components [R]. New York: Welding Research Council, 2002.
[13] FRICKE W. Recommended hot-spot analysis procedure for structural details of ships and FPSOs based on round-robin FE analyses [J]. International Journal of Offshore and Polar Engineering, 2002, 12(1): 40-47.
[14] RADAJ D. Review of fatigue strength assessment of non-weld and welded structures based on local parameters [J]. International Journal of Fatigue, 1996, 18(3): 153-170.
[15] POUTIAINEN I, TANSKANEN P, MARQUIS G. Finite element methods for structural hot spot stress determination-a comparison of procedures [J]. International Journal of Fatigue, 2004, 26(11): 1147-1157.
[16] DOERK O, FRICKE C, WEISSENBORN C. Comparison of different calculation methods for structural stresses at welded joints [J]. International Journal of Fatigue, 2003, 25(5): 359-369.
[17] DONG P, HONG J K. Fatigue of tubular joints: hot spot stress method revisited [J]. Journal of Offshore Mechanics and Arctic Engineering, 2012, 134(3): 112.
[1] 李明, 刘扬, 唐雪松. 疲劳裂纹的跨尺度分析[J]. 浙江大学学报(工学版), 2017, 51(3): 524-531.
[2] 廖小伟, 王元清, 宗亮, 施刚. 基于有效缺口应力法的钢桥焊接细节疲劳分析[J]. 浙江大学学报(工学版), 2017, 51(1): 1-8.
[3] 肖新辉,鲁乃唯, 刘扬. 随机车流下公路钢桥疲劳可靠度分析[J]. 浙江大学学报(工学版), 2016, 50(9): 1777-1783.
[4] 孙珂, 张延庆. 基于位移影响线曲率的小半径弯桥损伤识别[J]. 浙江大学学报(工学版), 2016, 50(4): 727-734.
[5] 蒋正文, 万水, 李明鸿, 马磊. 结构可靠度分析中的混合模拟法及应用[J]. 浙江大学学报(工学版), 2015, 49(4): 782-791.
[6] 丁勇, 谢旭, 苟昌焕, 黄剑源. 钢桥交通振动计算方法与动力特性研究[J]. J4, 2012, 46(6): 1107-1114.
[7] 郭增伟,葛耀君,卢安平. 竖弯涡振控制的调谐质量阻尼器TMD参数优化设计[J]. J4, 2012, 46(1): 8-13.
[8] 俞亚南, 张巍, 申永刚. 大体积承台混凝土早期表面开裂控制措施[J]. J4, 2010, 44(8): 1621-1628.