Please wait a minute...
浙江大学学报(工学版)
土木工程、交通工程     
基于有效缺口应力法的钢桥焊接细节疲劳分析
廖小伟, 王元清, 宗亮, 施刚
1.清华大学 土木工程安全与耐久教育部重点实验室,北京 100084;
2.天津大学 滨海土木工程结构与安全教育部重点实验室,天津 300072
Fatigue analysis of typical welded joints of steel bridges using effective notch stress approach
LIAO Xiao wei, WANG Yuan qing, ZONG Liang, SHI Gang
1. Key Laboratory of Civil Engineering Safety and Durability of China Education Ministry, Tsinghua University, Beijing 100084, China;
2. Key Laboratory of Coast Structures Safety of Education Ministry, Tianjin University, Tianjin 300072, China
 全文: PDF(2067 KB)   HTML
摘要:

为了验证有效缺口应力法对于钢桥焊接构造细节疲劳寿命评估的适用性,简化基于S-N曲线的疲劳寿命评估程序,开展3种典型钢桥焊接构造细节在应力比为0.1的条件下的高周疲劳试验.采用ABAQUS有限元分析局部有效缺口应力,得到不等厚对接焊接接头、十字形非传力角焊缝接头和十字形传力角焊缝接头疲劳试样的有效缺口应力S-N曲线,探讨局部有效缺口应力对焊接接头失效模式的影响.结果表明,焊接位错量会严重影响十字形传力角焊缝接头的失效模式,采用有效缺口应力法可以有效地区分焊根或焊趾失效;名义应力S-N疲劳设计曲线与有效缺口应力FAT225疲劳设计曲线相比,具有更高的安全保证.3种构造细节的有效疲劳试验数据表明,采用有效缺口应力FAT200疲劳设计曲线更合理.

Abstract:

The fatigue life evaluation procedure based on the S-N curves was simplified in order to validate the applicability of the effective notch stress approach to the welded joints of steel bridge. Fatigue tests were performed for the unequal thickness butt-welded joints, non-load-carrying fillet-welded cruciform joints and loadcarrying fillet-welded cruciform joints when the stress ratio is 0.1. Then the local effective notch stress at the weld toe or weld root was analyzed by numerical calculation with ABAQUS, and the S-N curves in the effective notch stress system of the above-mentioned welded details were obtained. Effects of the values of effective notch stress on the fatigue failure modes of welded joints were investigated. The experimental and analytical results indicate that the size of the welding misalignment will determine the fatigue failure mode of the load-carrying fillet-welded cruciform joint, and the effective notch stress approach can distinguish the crack initiation location at weld toe or root. Nominal stress approach exhibits more conservative than the effective notch stress approach with FAT225 design curves. Experimental data demonstrates that FAT200 S-N curve will be more acceptable.

出版日期: 2017-01-01
CLC:  U 441  
基金资助:

国家自然科学基金资助项目(51378289,51678339);高等学校博士学科点专项科研基金资助项目(20130002110085).

作者简介: 廖小伟(1985—),男,博士生,从事钢结构疲劳研究. ORCID: 0000-0001-8759-1867. E-mail: liaoxw13@mails.tsinghua.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

廖小伟, 王元清, 宗亮, 施刚. 基于有效缺口应力法的钢桥焊接细节疲劳分析[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2017.01.001.

LIAO Xiao wei, WANG Yuan qing, ZONG Liang, SHI Gang. Fatigue analysis of typical welded joints of steel bridges using effective notch stress approach. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2017.01.001.

[1] HOBBACHER A F. The new IIW recommendations for the fatigue assessment of welded joints and componentsA comprehensive code recently updated [J]. International Journal of Fatigue, 2009, 31: 50-58.
[2] AYGL M, BOKESJ M, HESHMATI M, et al. A comparative study of different fatigue failure assessments of welded bridge details [J]. International Journal of Fatigue, 2013, 49: 62-72.
[3] HOBBACHER A F. Recommendations for fatiguedesign of welded joints and components [R]. Paris:International Institute of Welding, 2008.
[4] FRICKE W. IIW recommendations for the fatigueassessment by notch stress analysis for welded structures [R]. Paris: International Institute of Welding, 2010.
[5] SONSINO C M, FRICKE W, BRUYNE F D, et al. Notch stress concepts for the fatigue assessment of welded joints: background andapplications [J]. International Journal of Fatigue, 2012, 34(1): 216.
[6] PARK W, MIKI C. Fatigue assessment of largesize welded joints based on the effective notch stressapproach [J]. International Journal of Fatigue, 2008,30(9): 15561568.
[7] PEDERSEN M M, MOURITSEN O , HANSEN M R, et al. Reanalysis of fatigue data for welded jointsusing the notch stress approach [J]. International Journal of Fatigue, 2010, 32(10): 1620-1626.
[8] NGUYEN K T, GARBATOV Y, SOARES G. Fatigue damage assessment of corroded oil tanker details based on global and local stress approaches [J]. International Journal of Fatigue, 2012, 43: 197-206.
[9] OH D J, LEE J M, KIM M H. Fatigue strength assessment of Invar alloy weld joints using the notch stressapproach [J]. Engineering Failure Analysis, 2014, 42:8799.
[10] 祝志文, 钱六五. 基于有效缺口应力法的正交异性钢桥面板疲劳评价[J]. 湖南大学学报:自然科学版, 2015, 42(9): 59-67.
ZHU Zhiwen, QIAN liuwu. Fatigue assessment of orthotropic steel bridge deck based on the effective notch stress method [J]. Journal of Hunan University: Natural Sciences, 2015, 42(9): 59-67.
[11] AYGL M, ALEMRANI M, URUSHADZE S. Modelling and fatigue life assessment of orthotropic bridge deck details using FEM [J]. International Journal of Fatigue, 2012, 40: 129-142.
[12] SHAHRI M M, SANDSTRM R. Effective notch stress and critical distance method to estimate the fatigue life of T and overlap friction stir welded joints [J]. Engineering Failure Analysis, 2015, 25: 250-260.
[13] MORGENSTERN C, SONSINO C M, HOBBACHER A, et al. Fatigue design of aluminum welded joints by the local stress concept with the fictitious notch radius of rf =1mm [J]. International Journal of Fatigue, 2006, 28(8): 881-890.
[14] ZHANG G, RICHTER B. A new approach to thenumerical fatiguelife prediction of spotwelded structures [J]. Fatigue and Fracture of Engineering Materials and Structures, 2008, 23(6): 499-508.
[15] NEUBER H. ber die berücksichtigung der Spannungskonzentration bei Festigkeitsberechnungen [J]. Konstruktion, 1968, 20(7): 245251. (in German)
[16] RADAJ D. Design and analysis of fatigue resistant welded structures [M]. Cambridge: Abington, 1990.
[17] RADAJ D, SONSINO C M, FRICKE W. Fatigueassessment of welded joints by local approaches [M]. Cambridge: Woodhead, 2006.
[18] SONSINO C M. A consideration of allowable equivalent stresses for fatigue design of welded joints according to the notch stress concept with the reference radii rref = 1.00 and 0.05 mm [J]. Welding in the World, 2013, 53(3/4): 64-75.
[19] BAUMGARTNER J, BRUDER T. An efficient meshing approach for the calculation of notch stresses [J]. Welding in the World, 2013, 57(1): 137-145.
[20] KAINUMA S, MORI T. A study on fatigue crack initiation point of loadcarrying fillet welded cruciform joints [J]. International Journal of Fatigue, 2008,30(9): 1669-1677.

[1] 王力,刘世忠,路韡,牛思胜,施鑫磊. 新型波形钢腹板组合箱梁温度效应[J]. 浙江大学学报(工学版), 2021, 55(4): 675-683.
[2] 廖小伟,王元清,吴剑国,石永久. 低温环境下十字形非传力角焊缝接头的疲劳性能[J]. 浙江大学学报(工学版), 2020, 54(10): 2018-2026.
[3] 庄心善,赵汉文,王俊翔,黄勇杰. 合肥膨胀土动弹性模量与阻尼比试验研究[J]. 浙江大学学报(工学版), 2020, 54(4): 759-766.
[4] 龙江兴,金伟良,张军,毛江鸿,崔磊. 电化学修复后钢筋疲劳性能试验研究[J]. 浙江大学学报(工学版), 2020, 54(1): 64-72.
[5] 李明, 刘扬, 唐雪松. 疲劳裂纹的跨尺度分析[J]. 浙江大学学报(工学版), 2017, 51(3): 524-531.
[6] 肖新辉,鲁乃唯, 刘扬. 随机车流下公路钢桥疲劳可靠度分析[J]. 浙江大学学报(工学版), 2016, 50(9): 1777-1783.
[7] 孙珂, 张延庆. 基于位移影响线曲率的小半径弯桥损伤识别[J]. 浙江大学学报(工学版), 2016, 50(4): 727-734.
[8] 蒋正文, 万水, 李明鸿, 马磊. 结构可靠度分析中的混合模拟法及应用[J]. 浙江大学学报(工学版), 2015, 49(4): 782-791.
[9] 狄生奎, 文铖, 叶肖伟. 正交异性钢桥面板结构热点应力有限元分析[J]. 浙江大学学报(工学版), 2015, 49(2): 225-231.
[10] 丁勇, 谢旭, 苟昌焕, 黄剑源. 钢桥交通振动计算方法与动力特性研究[J]. J4, 2012, 46(6): 1107-1114.
[11] 郭增伟,葛耀君,卢安平. 竖弯涡振控制的调谐质量阻尼器TMD参数优化设计[J]. J4, 2012, 46(1): 8-13.
[12] 俞亚南, 张巍, 申永刚. 大体积承台混凝土早期表面开裂控制措施[J]. J4, 2010, 44(8): 1621-1628.