计算机与控制工程 |
|
|
|
|
基于强化学习的多路口可变车道协同控制方法 |
徐小高1(),夏莹杰1,*(),朱思雨1,邝砾2 |
1. 浙江大学 计算机科学与技术学院,浙江 杭州 310027 2. 中南大学 计算机学院,湖南 长沙 410012 |
|
Cooperative control algorithm of multi-intersection variable-direction lanes based on reinforcement learning |
Xiao-gao XU1(),Ying-jie XIA1,*(),Si-yu ZHU1,Li KUANG2 |
1. College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China 2. School of Computer Science and Engineering, Central South University, Changsha 410012, China |
引用本文:
徐小高,夏莹杰,朱思雨,邝砾. 基于强化学习的多路口可变车道协同控制方法[J]. 浙江大学学报(工学版), 2022, 56(5): 987-994, 1005.
Xiao-gao XU,Ying-jie XIA,Si-yu ZHU,Li KUANG. Cooperative control algorithm of multi-intersection variable-direction lanes based on reinforcement learning. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 987-994, 1005.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.05.016
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I5/987
|
1 |
WONG C K, WONG S C Lane-based optimization of signal timings for isolated junctions[J]. Transportation Research Part B: Methodological, 2003, 37 (1): 63- 84
doi: 10.1016/S0191-2615(01)00045-5
|
2 |
GOLUB A Perceived costs and benefits of reversible lanes in phoenix, Arizona[J]. ITE Journal: Institute of Transportation Engineers, 2012, 82 (2): 38
|
3 |
周立平, 董红利 信号交叉口转向可变车道长度研究[J]. 交通信息与安全, 2009, 27 (2): 58- 56 ZHOU Li-ping, DONG Hong-li Length of signal intersection turn variable lane[J]. Journal of Transport Information and Safety, 2009, 27 (2): 58- 56
|
4 |
赵靖, 周溪召 交叉口可变车道最佳车道功能及信号转变方法[J]. 上海理工大学学报, 2016, 38 (4): 380- 386 ZHAO Jing, ZHOU Xi-zhao Optimal switching method for lane assignment and signal control for variable lanes at intersections[J]. Journal of University of Shanghai for Science and Technology, 2016, 38 (4): 380- 386
|
5 |
聂磊, 马万经 基于车道等饱和度的交叉口车道功能优化模型[J]. 同济大学学报:自然科学版, 2020, 48 (1): 42- 50 NIE Lei, MA Wan-jing A novel model for optimization of lane allocation at isolated intersection[J]. Journal of Tongji University: Natural Science, 2020, 48 (1): 42- 50
|
6 |
聂磊, 马万经 基于车道的交叉口车道功能和信号相位优化模型[J]. 同济大学学报:自然科学版, 2020, 48 (5): 683- 693 NIE Lei, MA Wan-jing A lane-based optimization model for lane function and signal phase at intersection[J]. Journal of Tongji University: Natural Science, 2020, 48 (5): 683- 693
|
7 |
常玉林, 赵超, 张鹏, 等 拥堵条件下考虑相邻路口的可变导向车道自适应控制[J]. 重庆理工大学学报:自然科学, 2020, 34 (5): 17- 24 CHANG Yu-lin, ZHAO Chao, ZHANG Peng, et al An adaptive control of variable lane considering adjacent intersections under congested condition[J]. Journal of Chongqing University of Technology: Natural Science, 2020, 34 (5): 17- 24
|
8 |
赵超. 基于可变导向车道的多路口信号自适应控制方法[D]. 镇江: 江苏大学, 2019. ZHAO Chao. Multi-intersection signal adaptive control based on variable approach lane[D]. Zhenjiang: Jiangsu University, 2019.
|
9 |
YAO R, ZHANG X, WU N, et al Modeling and control of variable approach lanes on an arterial road: a case study of Dalian[J]. Canadian Journal of Civil Engineering, 2018, 45 (11): 986- 1003
doi: 10.1139/cjce-2017-0432
|
10 |
LI L, QU Z, SONG X, et al. Research on variable lane signalized control method [C]// 2009 International Conference on Measuring Technology and Mechatronics Automation. Zhangjiajie: IEEE, 2009, 3: 575-578.
|
11 |
QING M, MIN W. A new control strategy of variable lane based on video detection [C]// 2014 5th International Conference on Intelligent Systems Design and Engineering Applications. Hunan: IEEE, 2014: 40-43.
|
12 |
HE J, ZHU Y, ZHANG J, et al. Reversible lane control system with low emission load based on VISSIM simulator [C]// 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering. Nanchang: IEEE, 2021: 911-914.
|
13 |
许佳佳, 许倩, 潘立琼 基于短时交通状态预测的交叉口导向车道智能转换系统[J]. 喀什大学学报, 2019, 40 (3): 39- 43 XU Jia-jia, XU Qian, PAN Li-qiong Intersection-oriented lane intelligent conversion system based on short term traffic state prediction[J]. Journal of Kashi University, 2019, 40 (3): 39- 43
|
14 |
蔡建荣, 黄汝晴, 黄中祥 考虑通行能力折减的可变车道优化[J]. 中南大学学报:自然科学版, 2018, 49 (7): 1838- 1844 CAI Jian-rong, HUANG Ru-qing, HUANG Zhong-xiang Optimization of variable lane considering reduction of capacity[J]. Journal of Central South University: Science and Technology, 2018, 49 (7): 1838- 1844
|
15 |
WEI H, ZHENG G, YAO H, et al. Intellilight: a reinforcement learning approach for intelligent traffic light control [C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. London: [s. n.], 2018: 2496-2505.
|
16 |
CHU T, WANG J, CODECA L, et al Multi-agent deep reinforcement learning for large-scale traffic signal control[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21 (3): 1086- 1095
|
17 |
WANG G, HU J, LI Z, et al Harmonious lane changing via deep reinforcement learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (5): 4642- 4650
|
18 |
RASHID T, SAMVELYAN M, SCHROEDER C, et al. QMIX: Monotonic value function factorisation for deep multi-agent reinforcement learning [C]// International Conference on Machine Learning. Stockholm: PMLR, 2018: 4295-4304.
|
19 |
SUNEHAG P, LEVER G, GRUSLYS A, et al. Value-decomposition networks for cooperative multi-agent learning based on team reward [C]// Proceedings of the 17th International Conference on Autonomous Agents and Multi-Agent Systems. Richland: [s. n.], 2018: 2085-2087.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|