Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (5): 890-900, 908    DOI: 10.3785/j.issn.1008-973X.2022.05.006
土木工程     
碳纤维布约束型钢混凝土矩形柱轴压承载力
高鹏1,2(),曾学波1,吴宜龙3,彭飞3
1. 合肥工业大学 土木与水利学院,安徽合肥 230009
2. 同济大学 工程结构性能演化与控制教育部重点实验室,上海 200092
3. 国网安徽省电力有限公司,安徽合肥 230009
Axial compression bearing capacity of steel reinforced concrete rectangular columns confined by carbon fiber reinforced polymer
Peng GAO1,2(),Xue-bo ZENG1,Yi-long WU3,Fei PENG3
1. School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
2. Key Laboratory of Performance Evolution and Control for Engineering Structures of Ministry of Education, Tongji University, Shanghai 200092, China
3. State Grid Anhui Electric Power Limited Company, Hefei 230009, China
 全文: PDF(3086 KB)   HTML
摘要:

为了研究碳纤维布(CFRP)约束型钢混凝土矩形柱的轴压性能,对29个构件进行静力加载试验,考虑配筋率、预载水平、截面圆角半径和高宽比、纤维布加固率和加固方式共6个参数. 结果表明:所有约束柱均以核心区混凝土压碎和纤维布断裂为破坏标志;随着预载水平提高,布的有效拉应变不断减小,柱承载力降低;随着圆角半径增大和高宽比减小,纤维布环向应变更高且分布趋于均匀;随着加固率增加,柱破坏模式由弱约束转成强约束,纤维布加固效率降低;在同等用量布的加固下,当条带宽度和间距减小时,构件承载力增幅增加. 基于各因素对约束应力的影响,确定了区分大尺寸柱强弱约束模式的界限值;采用叠加法建立了多参数的约束型钢柱轴压承载力计算式.

关键词: 纤维增强复合材料约束型钢混凝土柱轴压试验承载力强弱约束    
Abstract:

Twenty-nine specimens were conducted to the axial compression experiment, in order to study the axial compression performance of steel reinforced concrete rectangular columns confined by carbon fiber reinforced polymer (CFRP). Six parameters were considered, which included reinforcement ratio, preload level, corner radius and aspect ratio of cross sections, as well as amount and scheme of CFRP. Results indicated that the confined columns all failed in the fracture of CFRP when the core concrete crushed. With the increasing preload level, both the effective tensile strain of CFRP and the bearing capacity of confined columns decreased gradually. With the increasing corner radius and decreasing aspect ratio, the circumferential strain of CFRP got higher value and more uniform distribution. As increasing amount of CFRP, the constraint mode of the column changed from weak constraint to strong constraint, and the utilization of CFRP decreased. When the width and spacing of the strips decreased, the increment of bearing capacity increased with the same amount of CFRP. Finally, considering various parameters, the boundary value for determining the strong and weak modes was proposed. The formulation of the axial bearing capacity of confined steel reinforced rectangular columns was set up by superposition method.

Key words: fiber reinforced polymer    confined steel reinforced concrete column    axial compression experiment    bearing capacity    strong and weak confinement
收稿日期: 2021-06-07 出版日期: 2022-05-31
CLC:  TU 502  
基金资助: 国家自然科学基金资助项目 (51208166); 工程结构性能演化与控制教育部重点实验室开放基金资助项目 (2018KF-1)
作者简介: 高鹏(1978—),男,副教授,从事混凝土结构研究. orcid.org/0000-0002-5327-9821. E-mail: penggao@hfut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
高鹏
曾学波
吴宜龙
彭飞

引用本文:

高鹏,曾学波,吴宜龙,彭飞. 碳纤维布约束型钢混凝土矩形柱轴压承载力[J]. 浙江大学学报(工学版), 2022, 56(5): 890-900, 908.

Peng GAO,Xue-bo ZENG,Yi-long WU,Fei PENG. Axial compression bearing capacity of steel reinforced concrete rectangular columns confined by carbon fiber reinforced polymer. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 890-900, 908.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.05.006        https://www.zjujournals.com/eng/CN/Y2022/V56/I5/890

编号 h×b/mm×mm d/mm n w/mm s′/mm r/mm m Pc
1)注:以构件YZ2-0.50为例:“YZ”指预载组;“2”指包裹2层纤维布;“0.50”指对应的设计预载水平为0.50.
DB1 300×250 16 0 ? ? ? ? 1
DB2 300×250 16 0 ? ? ? ? 2

YZ2-0.501) 300×250 16 2 100 100 20 0.50 1
YZ2-0.60 300×250 16 2 100 100 20 0.60 1
YZ2-0.65 300×250 16 2 100 100 20 0.65 1
YZ2-0.70 300×250 16 2 100 100 20 0.70 1
YJ2-20 300×250 16 2 100 100 20 ? 1
YJ2-40 300×250 16 2 100 100 40 ? 1
YJ2-60 300×250 16 2 100 100 60 ? 1
YJ2-80 300×250 16 2 100 100 80 ? 1
JL2-100 300×250 16 2 100 100 20 ? 1
JL3-100 300×250 16 3 100 100 20 ? 1
JL3-75 300×250 16 3 100 75 20 ? 1
JL3-50 300×250 16 3 100 50 20 ? 1
JL4-50 300×250 16 4 100 50 20 ? 1
JF1-0 300×250 16 1 800 0 20 ? 2
JF2-50 300×250 16 2 50 50 20 ? 2
JF2-80 300×250 16 2 80 80 20 ? 2
JF2-100 300×250 16 2 100 100 20 ? 2
JF2-200 300×250 16 2 200 200 20 ? 2
GK2-1.0 250×250 16 2 100 100 20 ? 2
GK2-1.2 300×250 16 2 100 100 20 ? 2
GK2-1.4 350×250 16 2 100 100 20 ? 2
GK2-1.6 400×250 16 2 100 100 20 ? 2
PJ1-14 300×250 14 1 100 100 20 ? 2
PJ1-16 300×250 16 1 100 100 20 ? 2
PJ1-18 300×250 18 1 100 100 20 ? 2
PJ1-20 300×250 20 1 100 100 20 ? 2
PJ1-22 300×250 22 1 100 100 20 ? 2
表 1  CFRP约束型钢混凝土柱轴压试验的各试件参数
图 1  CFRP约束型钢混凝土柱的轴压试验构件设计
图 2  CFRP约束型钢混凝土柱轴压试验加载装置
图 3  构件DB1和YZ组中典型柱的破坏形态对比
图 4  YJ组和GK组中典型柱和CFRP布的破坏形态
图 5  JL组和JF组中典型柱破坏形态
图 6  CFRP约束型钢混凝土试验中各组柱的轴向荷载-变形曲线
图 7  YJ2-40和YJ2-80的荷载-CFRP应变曲线
图 8  GK2-1.0和GK2-1.6的CFRP应变分布
图 9  CFRP布有效拉应变系数和预载水平关系
图 10  等效应力隔离体和条带式约束示意图
图 11  侧向约束比的强弱模式界限值
图 12  约束混凝土组合柱截面中混凝土约束区划分
编号 A/mm2 Aco/mm2 Acc/mm2 Ach/mm2 λ fcc/MPa Nc/kN Ne/kN Nc/Ne
YZ2-0.50 74656 36418 33031 2968 0.033 22.67 1973 1813 1.088
YZ2-0.60 74656 36418 33031 2968 0.030 22.61 1972 1740 1.133
YZ2-0.65 74656 36418 33031 2968 0.029 22.58 1971 1704 1.157
YZ2-0.70 74656 36418 33031 2968 0.028 22.55 1970 1601 1.230
YJ2-20 74656 36418 33031 2968 0.046 22.95 1982 1856 1.068
YJ2-40 73624 25004 43413 2968 0.052 23.10 1977 1997 0.990
YJ2-60 71904 15760 50937 2968 0.053 23.12 1954 2047 0.954
YJ2-80 69496 8684 55605 2968 0.054 23.14 1915 2027 0.945
JL2-100 74656 36418 33031 2968 0.046 22.95 1982 1856 1.068
JL3-100 74656 36418 33031 2968 0.068 23.45 1998 1928 1.036
JL3-75 74656 36418 33031 2968 0.077 23.64 2003 2026 0.989
JL3-50 74656 36418 33031 2968 0.086 23.83 2009 2192 0.917
JL4-50 74656 36418 33031 2968 0.114 24.45 2028 2255 0.900
JF1-0 74656 36418 33031 2968 0.038 21.02 1870 1848 1.012
JF2-50 74656 36418 33031 2968 0.062 21.51 1885 2082 0.906
JF2-80 74656 36418 33031 2968 0.054 21.36 1881 2070 0.909
JF2-100 74656 36418 33031 2968 0.049 21.26 1878 2014 0.932
JF2-200 74656 36418 33031 2968 0.029 20.84 1865 1772 1.052
GK2-1.0 62156 29400 27549 2968 0.051 21.30 1659 1786 0.929
GK2-1.2 74656 36418 33031 2968 0.049 21.26 1878 2014 0.932
GK2-1.4 87156 43461 38488 2968 0.049 21.25 2097 2246 0.934
GK2-1.6 99656 50520 43929 2968 0.048 21.24 2317 2346 0.987
PJ1-14 74656 36418 33220 2968 0.025 20.76 1791 1838 0.974
PJ1-16 74656 36418 33031 2968 0.025 20.76 1862 1856 1.003
PJ1-18 74656 36418 32818 2968 0.025 20.76 1943 1906 1.019
PJ1-20 74656 36418 32579 2968 0.025 20.76 2033 1923 1.057
PJ1-22 74656 36418 32315 2968 0.025 20.76 2133 1988 1.073
表 2  碳纤维布约束型钢混凝土柱轴压承载力的试验值与计算值对比
1 刘伟庆, 方海, 方园 纤维增强复合材料及其结构研究进展[J]. 建筑结构学报, 2019, 40 (4): 1- 16
LIU Wei-qing, FANG Hai, FANG Yuan Research progress of fiber-reinforced composite and structure[J]. Journal of Building Structures, 2019, 40 (4): 1- 16
2 吴智深, 汪昕, 史健喆 玄武岩纤维复合材料性能提升及其新型结构[J]. 工程力学, 2020, 37 (5): 1- 14
WU Zhi-shen, WANG Xin, SHI Jian-zhe Advancement of basalt fiber-reinforced polymers (BFRPS) and the novel structures reinforced with BFRPS[J]. Engineering Mechanics, 2020, 37 (5): 1- 14
3 史庆轩, 戎翀, 陈云枭 FRP-钢-混凝土组合柱的研究现状[J]. 建筑材料学报, 2019, 22 (3): 431- 439
SHI Qing-xuan, RONG Chong, CHEN Yun-xiao Research status of FRP-steel-concrete composite column[J]. Journal of Building Materials, 2019, 22 (3): 431- 439
doi: 10.3969/j.issn.1007-9629.2019.03.015
4 潘毅, 曹双寅, 敬登虎 负载下碳纤维布约束混凝土方柱轴压应力-应变关系的试验研究与分析[J]. 土木工程学报, 2009, 42 (1): 23- 29
PAN Yi, CAO Shuang-yin, JING Deng-hu Test and analysis of the axial stress-strain relationship of square section concrete columns confined by CFRP under preload[J]. Journal of Civil Engineering, 2009, 42 (1): 23- 29
doi: 10.3321/j.issn:1000-131X.2009.01.004
5 潘毅, 吴晓飞, 郭瑞, 等 长期荷载作用下FRP约束混凝土应力-应变关系分析模型[J]. 建筑结构学报, 2017, 38 (10): 139- 148
PAN Yi, WU Xiao-fei, GUO Rui, et al Analysis-oriented stress-strain model of FRP-confined concrete under long-term sustained load[J]. Journal of Building Structures, 2017, 38 (10): 139- 148
6 WANG L M, WU Y F Effect of corner radius on the performance of CFRP-confined square concrete columns: test[J]. Engineering Structures, 2008, 30: 493- 505
doi: 10.1016/j.engstruct.2007.04.016
7 MOSTOFINEJAD D, MOSHIRI N, MORTAZAVI N Effect of corner radius and aspect ratio on compressive behavior of rectangular concrete columns confined with CFRP[J]. Materials and Structures, 2015, 48 (1/2): 107- 122
8 WU Y F, WEI Y Y Effect of cross-sectional aspect ratio on the strength of CFRP confined rectangular concrete columns[J]. Engineering Structures, 2010, 32 (1): 32- 45
doi: 10.1016/j.engstruct.2009.08.012
9 PARK T W, NA U J, CHUNG L, et al Compressive behavior of concrete cylinders confined by narrow strips of CFRP with spacing[J]. Composites Part B: Engineering, 2008, 39 (7/8): 1093- 1103
10 周长东, 黄承逵 玻璃纤维聚合物约束混凝土方柱简化分析模型[J]. 哈尔滨工业大学学报, 2004, 36 (5): 637- 641,651
ZHOU Chang-dong, HUANG Cheng-kui Simplified analytic models for GFRP confined concrete square columns[J]. Journal of Harbin Institute of Technology, 2004, 36 (5): 637- 641,651
doi: 10.3321/j.issn:0367-6234.2004.05.021
11 敬登虎, 曹双寅 方形截面混凝土柱FRP约束下的轴向应力-应变曲线计算模型[J]. 土木工程学报, 2005, 38 (12): 32- 37
JING Deng-hu, CAO Shuang-yin A model for calculating the axial stress-strain curve of square-section concrete column confined by FRP[J]. China Civil Engineering Journal, 2005, 38 (12): 32- 37
doi: 10.3321/j.issn:1000-131X.2005.12.006
12 中国冶金建设协会. 纤维增强复合材料建设工程应用技术规范: GB 50608—2010 [S]. 北京: 中国计划出版社, 2011.
13 王作虎, 申书洋, 崔宇强, 等 CFRP加固混凝土柱轴压性能尺寸效应试验分析[J]. 哈尔滨工业大学学报, 2020, 52 (8): 112- 120
WANG Zuo-hu, SHEN Shu-yang, CUI Yu-qiang, et al Experimental analysis on size effect of axial compressive behavior for reinforced concrete columns with CFRP[J]. Journal of Harbin Institute of Technology, 2020, 52 (8): 112- 120
doi: 10.11918/201906169
14 GUO Y C, GAO W Y, ZENG J J Compressive behavior of FRP ring-confined concrete in circular columns: effects of specimen size and a new design-oriented stress-strain model[J]. Construction and Building Materials, 2019, 201: 350- 368
doi: 10.1016/j.conbuildmat.2018.12.183
15 WANG D Y, WANG Z Y, SMITH S T, et al Size effect on axial stress-strain behavior of CFRP-confined square concrete columns[J]. Construction and Building Materials, 2016, 118: 116- 126
doi: 10.1016/j.conbuildmat.2016.04.158
16 MASIA M J, GALE T N, SHRIVE N G Size effects in axially loaded square-section concrete prisms strengthened using carbon fibre reinforced polymer wrapping[J]. Canadian Journal of Civil Engineering, 2004, 31 (1): 1- 13
doi: 10.1139/l03-064
17 中国国家标准化管理委员会. 金属材料室温拉伸试验方法: GB/T 228—2002 [S]. 北京: 中国标准出版社, 2002.
18 熊学玉, 徐海峰, 李亚明 负载下CFRP布约束钢筋混凝土矩形柱轴心受压性能分析[J]. 土木工程学报, 2010, 43 (6): 26- 33
XIONG Xue-yu, XU Hai-feng, LI Ya-ming The axial compressive behavior of CFRP-confined rectangular RC columns under service loading[J]. China Civil Engineering Journal, 2010, 43 (6): 26- 33
19 NISTICO N, MONTI G RC square sections confined by FRP: analytical prediction of peak strength[J]. Composites Part B: Engineering, 2013, 45 (1): 127- 137
20 KARAM G, TABBARA M Confinement effectiveness in rectangular concrete columns with fiber reinforced polymer wraps[J]. Journal of Composites for Construction, 2005, 9 (5): 388- 396
doi: 10.1061/(ASCE)1090-0268(2005)9:5(388)
21 SAATCIOGLU M, RAZVI S R Strength and ductility of confined concrete[J]. Journal of Structural Engineering, 1992, 118 (6): 1590- 1607
doi: 10.1061/(ASCE)0733-9445(1992)118:6(1590)
22 MANDER J B, PRIESTLEY M J N, PARK R Theoretical stress-strain model for confined concrete[J]. Materials in Civil Engineering, 1988, 114 (8): 1804- 1826
23 MIRMIRAN A, SHAHAWY M, SAMAAN M, et al Effect of column parameters on FRP-confined concrete[J]. Journal of Composites for Construction, 1998, 2 (4): 175- 185
doi: 10.1061/(ASCE)1090-0268(1998)2:4(175)
24 王代玉, 王震宇, 乔鑫 CFRP中等约束钢筋混凝土方柱反复受压本构模型[J]. 湖南大学学报:自然科学版, 2014, 41 (4): 39- 46
WANG Dai-yu, WANG Zhen-yu, QIAO Xin Cyclic stress strain model for CFRP moderately confined reinforced concrete square columns[J]. Journal of Hunan University: Natural Science Edition, 2014, 41 (4): 39- 46
25 TOUTANJI H, HAN M, GILBERT J, et al Behavior of large-scale rectangular columns confined with FRP composites[J]. Journal of Composites for Construction, 2010, 14 (1): 62- 71
doi: 10.1061/(ASCE)CC.1943-5614.0000051
26 ZENG J J, LIN G, TENG J G, et al Behavior of large-scale FRP-confined rectangular RC columns under axial compression[J]. Engineering Structures, 2018, 174: 629- 645
doi: 10.1016/j.engstruct.2018.07.086
27 高鹏, 殷强, 王健, 等 复材布约束有预压荷载的型钢混凝土矩形短柱轴压性能试验研究[J]. 工业建筑, 2016, 46 (6): 170- 176
GAO Peng, YIN Qiang, WANG Jian, et al Experimental study of the axial compressive performance of preloaded steel reinforced concrete rectangular short column confined by carbon fiber reinforced polymer laminates[J]. Industrial Building, 2016, 46 (6): 170- 176
28 高鹏, 赵元鸿, 洪丽, 等 圆角半径对碳纤维增强聚合物复合材料布约束型钢混凝土矩形短柱轴压性能的影响[J]. 复合材料学报, 2020, 37 (4): 775- 785
GAO Peng, ZHAO Yuan-hong, HONG Li, et al Effect of corner radius on axial compressive performance of steel reinforced concrete rectangular short column confined by carbon fiber reinforced polymer composite[J]. Acta Materiae Composite Sinica, 2020, 37 (4): 775- 785
29 DELUCA A, NARDONE F, MATTA F, et al Structural evaluation of full-scale FRP-confined reinforced concrete columns[J]. Journal of Composites for Construction, 2011, 15 (1): 112- 123
doi: 10.1061/(ASCE)CC.1943-5614.0000152
30 ACI 440 Committee. Guide for design and construction of externally bonded FRP systems for strengthening concrete structures: ACI 440.2R-08 [S]. Farmington Hills: American Concrete Institute, 2008.
31 CHEN C C, LIN N J Analytical model for predicting axial capacity and behavior of concrete encased steel composite stub columns[J]. Journal of Constructional Steel Research, 2006, 62 (5): 424- 433
doi: 10.1016/j.jcsr.2005.04.021
32 RAZVI S, SAATCIOGLU M Confinement model for high-strength concrete[J]. Journal of Structural Engineering, 1999, 125 (3): 281- 289
doi: 10.1061/(ASCE)0733-9445(1999)125:3(281)
33 王连广, 秦国鹏, 周乐 GFRP管钢骨高强混凝土组合柱轴心受压试验研究[J]. 工程力学, 2009, 26 (9): 170- 175
WANG Lian-guang, QIN Guo-peng, ZHOU Le Experimental research of GFRP tube columns filled with steel-reinforced high-strength concrete subjected to axial loading[J]. Engineering Mechanics, 2009, 26 (9): 170- 175
[1] 曾丹,刘扬,曹磊. 钢-UHPC组合结构新型剪力件的抗剪性能[J]. 浙江大学学报(工学版), 2021, 55(9): 1714-1724.
[2] 王威,赵昊田,权超超,宋鸿来,李昱,周毅香. 墙趾可更换竖波钢板剪力墙抗剪承载力[J]. 浙江大学学报(工学版), 2021, 55(8): 1407-1418.
[3] 冯炳,陈勇,崔旭,沈国辉,徐海巍. 考虑剪切变形的轴心受压GFRP圆管临界荷载[J]. 浙江大学学报(工学版), 2021, 55(10): 1894-1902.
[4] 范兴朗,谷圣杰,江佳斐,吴熙. FRP筋混凝土板冲切承载力计算方法[J]. 浙江大学学报(工学版), 2020, 54(6): 1058-1067.
[5] 胡文韬,刘豆,耿大新,王宁,徐长节,上官兴,闵婕. 水平受荷阶梯形变截面桩的内力及变形分析[J]. 浙江大学学报(工学版), 2020, 54(4): 739-747.
[6] 汪劲丰,张爱平,王文浩. 栓钉高度对栓钉连接件抗剪性能的影响[J]. 浙江大学学报(工学版), 2020, 54(11): 2076-2084.
[7] 郑山锁,郑跃,董立国,可亮,张艺欣. 近海环境下锈蚀箍筋约束混凝土本构模型[J]. 浙江大学学报(工学版), 2020, 54(1): 48-55.
[8] 王忠瑾, 张日红, 王奎华, 方鹏飞, 谢新宇, 徐韩强, 李金柱. 能源载体条件下静钻根植桩承载特性[J]. 浙江大学学报(工学版), 2019, 53(1): 11-18.
[9] 蒋翔, 童根树, 张磊. 耐火钢-混凝土组合梁耐火极限和承载力[J]. 浙江大学学报(工学版), 2017, 51(8): 1482-1493.
[10] 王强, 金凌志, 曹霞, 吕海波. 活性粉末混凝土梁抗剪性能试验研究[J]. 浙江大学学报(工学版), 2017, 51(5): 922-930.
[11] 何奔,王欢,洪义,王立忠,赵长军,秦肖. 竖向荷载对黏土地基中单桩水平受荷性能的影响[J]. 浙江大学学报(工学版), 2016, 50(7): 1221-1229.
[12] 张婷婷,谢旭,潘骁宇. 考虑断丝影响的平行钢丝索拉伸力学特性[J]. 浙江大学学报(工学版), 2016, 50(5): 841-847.
[13] 刘逸祥, 童根树, 张磊. 耐火钢圆钢管混凝土柱耐火极限和承载力[J]. 浙江大学学报(工学版), 2015, 49(2): 208-217.
[14] 熊海贝, 李奔奔, 江佳斐. FRP约束混凝土圆柱应力-应变模型的适用性[J]. 浙江大学学报(工学版), 2015, 49(12): 2363-2375.
[15] 周佳锦,王奎华,龚晓南,张日红,严天龙. 静钻根植抗拔桩承载性能数值模拟[J]. 浙江大学学报(工学版), 2015, 49(11): 2135-2141.