Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (6): 1057-1070    DOI: 10.3785/j.issn.1008-973X.2019.06.005
土木与建筑工程     
基于分布式光纤传感的地下管线监测研究综述
吴海颖1(),朱鸿鹄1,2,*(),朱宝1,齐贺3
1. 南京大学 地球科学与工程学院,江苏 南京 210023
2. 南京大学(苏州)高新技术研究院,江苏 苏州 215123
3. 中建科技有限公司深圳分公司,广东 深圳 518000
Review of underground pipeline monitoring research based on distributed fiber optic sensing
Hai-ying WU1(),Hong-hu ZHU1,2,*(),Bao ZHU1,He QI3
1. School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
2. Nanjing University High-Tech Institute at Suzhou, Suzhou 215123, China
3. Shenzhen Branch of China Construction Science and Technology Group Co. Ltd, Shenzhen 518000, China
 全文: PDF(1057 KB)   HTML
摘要:

概述地下管线在国民经济和国防建设中的重要作用以及管道失效可能带来的严重后果. 指出分布式光纤传感(DFOS)技术能够对地下管线进行实时监测,为其结构健康和安全运营提供保障. 介绍基于分布式光纤传感技术的地下管线监测原理,阐述该技术在管线泄漏监测、第三方入侵监测、变形监测、腐蚀监测、地质与自然灾害监测和海底管道监测等方面的研究进展.分析当前研究中存在的问题、当下的研究热点以及今后的研究趋势.

关键词: 分布式光纤传感(DFOS)地下管线变形泄漏腐蚀第三方入侵    
Abstract:

Outline the important role of underground pipelines in national economy and defense construction, as well as the possible serious consequences of pipeline failure. Point out that the real-time monitoring of underground pipelines by using distributed fiber optic sensing (DFOS) technology can guarantee the structural health and safe operation of pipelines. Introduce the pipeline monitoring principle based on DFOS technology, and the research progress of DFOS technology in pipeline leakage monitoring, third party intrusion monitoring, deformation monitoring, corrosion monitoring, geological and natural disaster monitoring and submarine pipeline monitoring. Analyze some existing problems and hot topics in the current research, as well as the future research trend.

Key words: distributed fiber optic sensing (DFOS)    underground pipeline    deformation    leakage    corrosion    third party intrusion
收稿日期: 2018-06-19 出版日期: 2019-05-22
CLC:  TU 990.3  
通讯作者: 朱鸿鹄     E-mail: why@smail.nju.edu.cn;zhh@nju.edu.cn
作者简介: 吴海颖(1996—),男,硕士生,从事地质工程研究. orcid. org/0000-0002-3059-0318. E-mail: why@smail.nju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
吴海颖
朱鸿鹄
朱宝
齐贺

引用本文:

吴海颖,朱鸿鹄,朱宝,齐贺. 基于分布式光纤传感的地下管线监测研究综述[J]. 浙江大学学报(工学版), 2019, 53(6): 1057-1070.

Hai-ying WU,Hong-hu ZHU,Bao ZHU,He QI. Review of underground pipeline monitoring research based on distributed fiber optic sensing. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1057-1070.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.06.005        http://www.zjujournals.com/eng/CN/Y2019/V53/I6/1057

监测方法 方法简述 优势 不足
生物法 主要是利用人或动物沿管线方向长期监视其附近气味或声音等方面异常情况,是一种常规的监测方法 直接准确,反馈及时 实时性差,会耗费大量人力物力
硬件法 主要是通过电学监测器、声学监测器、气体监测器、压力监测器等获取地下管线的温度、声音、压力等信息,从而判断地下管线是否正常运行 实时监测,种类多样 监测范围受到限制,难以精确、定量地分析地下管线变化,难以直观地衡量监测指标
软件法 利用软件系统提供的流量、压力、温度等数据,通过体积平衡、动力模型和压力点分析软件来监测地下管线的动态变化 方法科学,计算迅速,监测结果
非常清晰直观
难以保证数据来源的准确性和精确度以及地下管线动态变化模型的可靠度
表 1  常规地下管线监测方法对比
传感技术 基本原理 感测参量 优势 局限性
FBG 相长干涉 应变、温度 轻便易携带,可靠性高、抗腐蚀、抗电磁干扰、灵敏度高、分辨率高,测量精度可达1 με/0.1 °C 准分布式测量,存在漏检的可能,高温下光栅有消退现象,裸传感器易受损
ROTDR 拉曼散射光时域反射 温度 单端测量,仅对温度敏感,温度监测精度可达到±0.5 °C,单线测量长度最高可达6 km 空间分辨率相对较低,一般为1 m
ROFDR 拉曼散射光频域反射 温度 单端测量,仅对温度敏感,最小温度分辨率达到0.01 °C,空间分辨率可达到0.25 m,测试距离最大可达40 km 光源相干性和器件要求高,光路实现困难
BOTDR 自发布里渊散射光时域反射 应变、温度 单端测量,无需回路,工程适用性好,可测绝对温度和应变,测量距离最长可达80 km 测量时间较长,精度不高,空间分辨率较低,一般为1 m
BOTDA 受激布里渊散射光时域分析 应变、温度 双端测量,动态范围大,测试时间短,精度高,空间分辨率高达0.1 m,可测绝对温度和应变,测试距离可达25 km 不可测断点,双端测量风险高
BOFDA 受激布里渊散射光频域分析 应变、温度 双端测量,信噪比高,动态范围大,测量时间段,精度高,空间分辨率高达0.03 m,可测绝对温度和应变,测试距离可达25 km 不可测断点,双端测量风险高
OTDR 瑞利散射光时域反射 压力、振动 可精确测量光纤的光损点和断点位置,可实现结构物开裂的定位,测试距离可达40 km 受干扰因素多,测量精度相对较低,空间分辨率仅为1 m
Φ-OTDR 瑞利散射光相位变化 振动 单端测量,可感知光纤周围的微弱振动,抗电磁干扰,灵敏度高,空间分辨率达0.3 m,监测距离可达50 km 极为敏感,易误报
表 2  地下管线监测中常用的分布式光纤传感(DFOS)技术及其特点
图 1  基于DFOS技术的地下管线监测系统概念图
图 2  不同情况下传感光纤的布设示意图
图 3  液体管道泄漏导致温度变化的监测示意图
图 4  气体管道泄漏温度变化特性
事件 r/m
行人走动 5
行人奔跑 10
汽车经过(平缓路面) 20
汽车经过(凹凸路面) 50
挖掘机施工 100
表 3  分布式振动传感(DAS)技术对不同事件的最大感应半径
图 5  不同事件的振动信号分布曲线
图 6  管道位错变形示意图
图 7  管道纯弯曲变形示意图
图 8  滑坡区管土接触界面示意图
1 SUN Z, WANG P, VURAN M C, et al MISE-PIPE: magnetic induction-based wireless sensor networks for underground pipeline monitoring[J]. Ad Hoc Networks, 2011, 9 (3): 218- 227
doi: 10.1016/j.adhoc.2010.10.006
2 RICHARDS F Failure analysis of a natural gas pipeline rupture[J]. Journal of Failure Analysis and Prevention, 2013, 13 (6): 653- 657
doi: 10.1007/s11668-013-9745-7
3 LIAW H Lessons in process safety management learned in the Kaohsiung gas explosion accident in Taiwan[J]. Process Safety Progress, 2016, 35 (3): 228- 232
doi: 10.1002/prs.v35.3
4 SHIN S, LEE G, AHMED U, et al Risk-based underground pipeline safety management considering corrosion effect[J]. Journal of Hazardous Materials, 2018, 342: 279- 289
doi: 10.1016/j.jhazmat.2017.08.029
5 卓飞 石油地下管线监测系统的研究与设计[J]. 电子设计工程, 2010, 18 (9): 141- 143
ZHUO Fei Research and design of oil pipelines monitoring system[J]. Electronic Design Engineering, 2010, 18 (9): 141- 143
doi: 10.3969/j.issn.1674-6236.2010.09.041
6 刘海峰, 胡剑, 杨俊 国内油气长输管道检测技术的现状与发展趋势[J]. 天然气工业, 2004, 24 (11): 147- 150
LIU Hai-feng, HU Jian, YANG Jun The current situation and development trend of domestic oil and gas pipeline detection technology[J]. Natural Gas Industry, 2004, 24 (11): 147- 150
doi: 10.3321/j.issn:1000-0976.2004.11.044
7 WAN J, YU Y, WU Y, et al Hierarchical leak detection and localization method in natural gas pipeline monitoring sensor networks[J]. Sensors, 2012, 12 (1): 189
doi: 10.1109/JSEN.2011.2126568
8 王东, 任帅, 田旺和, 等 海底油气管道检测方法及安全性评估[J]. 地下管线技术与设备, 2014, 2: 19- 21
WANG Dong, REN Shuai, TIAN Wang-he, et al Oceanic oil and gas pipelines detection method and safety assessment[J]. Pipeline Technique and Equipment, 2014, 2: 19- 21
9 LIANG W, ZHANG L A wave change analysis (WCA) method for pipeline leak detection using Gaussian mixture model[J]. Journal of Loss Prevention in the Process Industries, 2012, 25 (1): 60- 69
doi: 10.1016/j.jlp.2011.06.017
10 OZEVIN D, HARDING J Novel leak localization in pressurized pipeline networks using acoustic emission and geometric connectivity[J]. International Journal of Pressure Vessels and Piping, 2012, 92 (2): 63- 69
11 曾文静, 张铁栋, 万磊, 等 基于Hough变换的水下管道检测方法[J]. 仪器仪表学报, 2012, 33 (1): 76- 84
ZENG Wen-jing, ZHANG Tie-dong, WAN Lei, et al Underwater pipeline detection based on Hough transform[J]. Chinese Journal of Scientific Instrument, 2012, 33 (1): 76- 84
doi: 10.3969/j.issn.0254-3087.2012.01.012
12 王正, 王洪诚, 傅磊, 等 基于多压力传感器负压波的管道检测法[J]. 传感器与微系统, 2015, 34 (5): 115- 118
WANG Zheng, WANG Hong-cheng, FU Lei, et al Pipeline detection method based on multiple-pressure sensor and negative pressure wave[J]. Transducer and Microsystem Technologies, 2015, 34 (5): 115- 118
13 FU Q, WAN H J, QIU F Pipeline leak detection based on fiber optic early-warning system[J]. Procedia Engineering, 2010, 7: 88- 93
doi: 10.1016/j.proeng.2010.11.013
14 OBEID A M, KARRAY F, JMAL M W, et al Towards realisation of wireless sensor network-based water pipeline monitoring systems: a comprehensive review of techniques and platforms[J]. IET Science Measurement and Technology, 2016, 10 (5): 420- 426
doi: 10.1049/iet-smt.2015.0255
15 韩飞 油气管道安全监测技术探讨[J]. 数字通信世界, 2010, 1: 56- 58
HAN Fei Discussion on the safety monitoring technology of oil and gas pipeline[J]. Digital Communication World, 2010, 1: 56- 58
doi: 10.3969/j.issn.1672-7274.2010.06.015
16 李明, 王晓霖, 吕高峰, 等 光纤传感及其在管道监测中应用的研究进展[J]. 当代化工, 2014, 43 (1): 54- 57
LI Ming, WANG Xiao-lin, LV Gao-feng, et al Development and application of optical fiber sensing technology in pipeline monitoring[J]. Contemporary Chemical Industry, 2014, 43 (1): 54- 57
doi: 10.3969/j.issn.1671-0460.2014.01.023
17 张旭苹. 全分布式光纤传感技术[M]. 北京: 科学出版社, 2013: 11-26.
18 朱鸿鹄, 施斌, 严珺凡, 等 基于分布式光纤应变感测的边坡模型试验研究[J]. 岩石力学与工程学报, 2013, 32 (4): 821- 828
ZHU Hong-hu, SHI Bin, YAN Jun-fan, et al Physical model testing of slope stability based on distributed fiber-optic strain sensing technology[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32 (4): 821- 828
doi: 10.3969/j.issn.1000-6915.2013.04.022
19 朱鸿鹄, 施斌 地质和岩土工程光电传感监测研究进展及趋势:第五届OSMG国际论坛综述[J]. 工程地质学报, 2015, 23 (2): 352- 360
ZHU Hong-hu, SHI Bin Current progress and trends of opto-electronic sensor-based monitoring in geo-engineering: a summary of 5th OSMG-2014[J]. Journal of Engineering Geology, 2015, 23 (2): 352- 360
20 施斌 论大地感知系统与大地感知工程[J]. 工程地质学报, 2017, 25 (3): 582- 591
SHI Bin On the ground sensing system and ground sensing engineering[J]. Journal of Engineering Geology, 2017, 25 (3): 582- 591
21 ZHANG J, HOFFMAN A, KANE A, et al. Development of pipeline leak detection technologies [C] // Proceedings of the 10th International Pipeline Conference. Alberta: ASME, 2014: 1–8.
22 NIKLES M. Long-distance fiber optic sensing solutions for pipeline leakage, intrusion, and ground movement detection [C] // Proceedings of the 6th Fiber Optic Sensors and Applications. Orlando: SPIE, 2009: 731602–731613.
23 NIKLES M, VOGEL B, BRIFFOD F, et al. Leakage detection using fiber optics distributed temperature monitoring [C] // Proceedings of the 11th SPIE Annual International Symposium on Smart Structures and Materials. San Diego: SPIE, 2004: 18–25.
24 MYLES A. Permanent leak detection on pipes using a fiber optic based continuous sensor technology [C] // Proceedings of Pipelines Conference 2011: a Sound Conduit for Sharing Solution. Seattle: ASCE, 2011: 744–754.
25 MIRZAEI A, BAHRAMPOUR A R, TARAZ M, et al Transient response of buried oil pipelines fiber optic leak detector based on the distributed temperature measurement[J]. International Journal of Heat and Mass Transfer, 2013, 65 (65): 110- 122
26 MADABHUSHI S S C, ELSHAFIE M Z E B, HAIGH S K Accuracy of distributed optical fiber temperature sensing for use in leak detection of subsea pipelines[J]. Journal of Pipeline Systems Engineering and Practice, 2015, 6 (2): 04014014
doi: 10.1061/(ASCE)PS.1949-1204.0000189
27 WANG F, SUN Z Q, ZHU F, et al. Research on the leakage monitoring of oil pipeline using BOTDR [C] // Proceedings of the 2016 Progress in Electromagnetic Research Symposium. Shanghai: IEEE, 2016: 4907–4910.
28 GROSSWIG S, HURTIG E, REITZE A, et al. Temperature logging for leak detection in gas caverns [C] // Proceedings of Solution Mining Research Institute Fall Spring 2009 Technical Conference. Krakow: Clarks Summit University, 2009: 83–88.
29 UKIL A, WANG L, GANG A. Leak detection in natural gas distribution pipeline using distributed temperature sensing [C] // Proceedings of IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society. Florence: IEEE, 2016: 417–422.
30 HUANG J, ZHOU Z, ZHANG D, et al A fiber Bragg grating pressure sensor and its application to pipeline leakage detection[J]. Advances in Mechanical Engineering, 2013, 2: 1310- 1313
31 HOU Q, JIAO W, REN L, et al Experimental study of leakage detection of natural gas pipeline using FBG based strain sensor and least square support vector machine[J]. Journal of Loss Prevention in the Process Industries, 2014, 32: 144- 151
doi: 10.1016/j.jlp.2014.08.003
32 WU H, QIAN Y, LI H, et al. Safety monitoring of long distance power transmission cables and oil pipelines with OTDR technology [C] // Proceedings of Laser and Electro-optics. San Jose: IEEE, 2015: 1–2.
33 王大伟, 封皓, 杨洋, 等 基于-OTDR光纤传感技术的供水管道泄漏辨识方法[J]. 仪器仪表学报, 2017, 38 (4): 830- 837
WANG Da-wei, FENG Hao, YANG Yang, et al Study on leakage identification method of water supply pipeline based on Ф-OTDR optical fiber sensing technology[J]. Chinese Journal of Scientific Instrument, 2017, 38 (4): 830- 837
doi: 10.3969/j.issn.0254-3087.2017.04.006
34 ZHOU L, WANG F, WANG X, et al Distributed strain and vibration sensing system based on phase-sensitive OTDR[J]. IEEE Photonics Technology Letters, 2015, 27 (17): 1884- 1887
doi: 10.1109/LPT.2015.2444419
35 TANIMOLA F, HILL D Distributed fiber optic sensors for pipeline protection[J]. Journal of Natural Gas Science and Engineering, 2009, 1 (4): 134- 143
36 李鹏 基于DAS技术的天水市城区供水管道安全监测概述[J]. 水能经济, 2017, 7: 114- 116
LI Peng A survey on the safety monitoring of water supply pipeline in Tianshui urban area based on DAS technology[J]. Water Energy Economy, 2017, 7: 114- 116
37 冷建成, 刘扬, 周国强, 等 基于光纤光栅传感的管道应力监测方法研究[J]. 压力容器, 2013, 30 (1): 70- 74
LENG Jian-cheng, LIU Yang, ZHOU Guo-qiang, et al Pipeline stress monitoring method based on fiber Bragg grating sensors[J]. Pressure Vessel Technology, 2013, 30 (1): 70- 74
doi: 10.3969/j.issn.1001-4837.2013.01.012
38 LIM K, WONG L, CHIU W K, et al Distributed fiber optic sensors for monitoring pressure and stiffness changes in out-of-round pipes[J]. Structural Control and Health Monitoring, 2016, 23 (2): 303- 314
doi: 10.1002/stc.1771
39 SIMPSON B, HOULT N A, MOORE I D Distributed sensing of circumferential strain using fiber optics during full-scale buried pipe experiments[J]. Journal of Pipeline Systems Engineering and Practice, 2015, 04015002
40 FENG X, WU W, ZHONG S, et al. Performance monitoring of extreme large-diameter prestressed concrete cylinder pipe with distributed fiber optic sensors [C] // Proceedings of Pipelines 2016. Kansas: ASCE, 2016: 553–564.
41 BERNINI R, MINARDO A, ZENI L Vectorial dislocation monitoring of pipelines by use of Brillouin-based fiber-optics sensors[J]. Smart Materials and Structures, 2008, 17 (1): 015006
doi: 10.1088/0964-1726/17/01/015006
42 胡盛, 施斌, 魏广庆, 等 聚乙烯管道变形分布式光纤监测试验研究[J]. 防灾减灾工程学报, 2008, 28 (4): 436- 440
HU Sheng, SHI Bin, WEI Guang-qing, et al Research on distributed fiber optic monitoring test of polyethylene pipe deformation[J]. Journal of Disaster Prevention and Mitigation Engineering, 2008, 28 (4): 436- 440
43 CAUCHI S, CHERPILLOD T, MORISON D, et al. Fiber-optic sensors for monitoring pipe bending due to ground movement [C] // Proceedings of the Biennial International Pipeline Conference. Calgary: ADME, 2007: 885–893.
44 VANAEI H R, ESLAMI A, EGBEWANDE A A review on pipeline corrosion, in-line inspection (ILI), and corrosion growth rate models[J]. International Journal of Pressure Vessels and Piping, 2017, 149: 43- 54
doi: 10.1016/j.ijpvp.2016.11.007
45 王朝晖, 石永春 管道检测技术[J]. 管道技术与设备, 1999, (1): 40- 41
WANG Zhao-hui, SHI Yong-chun Pipeline inspection technology[J]. Pipeline Technology and Equipment, 1999, (1): 40- 41
46 LI X L, ZHAO X F, LU X J Experimental study on the corrosion of buried directly heating supply pipeline based on the BOTDA(R) technique[J]. Sensors and Transducers, 2013, 6 (22): 74- 80
47 REN L, JIANG T, LI D, et al A method of pipeline corrosion detection based on hoop-strain monitoring technology[J]. Structural Control and Health Monitoring, 2017, 24: 1- 12
48 ZHANG C C, ZHU H H, LIU S P, et al A kinematic method for calculating shear displacements of landslides using distributed fiber optic strain measurements[J]. Engineering Geology, 2018, 234: 83- 96
doi: 10.1016/j.enggeo.2018.01.002
49 陈朋超, 李俊, 刘建平, 等 光纤光栅埋地管道滑坡区监测技术及应用[J]. 岩土工程学报, 2010, 32 (6): 897- 902
CHEN Peng-chao, LI Jun, LIU Jian-ping, et al Monitoring technology of pipelines using fiber Bragg grating and its application in landslide areas[J]. Chinese Journal of Geotechnical Engineering, 2010, 32 (6): 897- 902
50 RAVET F, NIKLES M, BORDA C, et al. Geohazard prevention and pipeline deformation monitoring using distributed optical fiber sensing [C] // Proceedings of the 20131st International Pipeline Geotechnical Conference. Bogotá: ASME, 2013: 2013–1908.
51 金伟良, 张恩勇, 邵剑文, 等 分布式光纤传感技术在海底管道健康监测中的应用[J]. 中国海上油气(工程), 2003, 15 (4): 5- 9
JIN Wei-liang, ZHANG En-yong, SHAO Jian-wen, et al Application of distributed fiber optic sensing technology in health monitoring of submarine pipelines[J]. China Offshore Oil and Gas (Engineering), 2003, 15 (4): 5- 9
doi: 10.3969/j.issn.1673-1506.2003.04.002
52 MCKEEHAN D S, GRIFFITHS R W. Marine applications for a continuous fiber optic strain monitoring system [C] // Proceedings of the 18th Annual Offshore Technology Conference. Houston: IEEE, 1986: 342–345.
53 JIN W L, SHAO J W, ZHANG E Y. Basic strategy of health monitoring on submarine pipeline by distributed optical fiber sensor [C] // Proceedings of OMAE0322nd International Conference on Offshore Mechanics and Arctic Engineering. Cancun: ASME, 2003: OMAE2003-37048
54 HAN Y, SHI B, REN X, et al Experimental study on the distribution of velocity and pressure near a submarine pipeline[J]. Journal of Ocean University of China: Oceanic and Coastal Sea Research, 2009, 8 (4): 404- 408
doi: 10.1007/s11802-009-0404-2
55 BARRIAS A, CASAS J R, VILLALBA S A review of distributed optical fiber sensors for civil engineering applications[J]. Sensors, 2016, 16 (5): 748
doi: 10.3390/s16050748
56 REN L, JIANG T, JIA Z G, et al Pipeline corrosion and leakage monitoring based on the distributed optical fiber sensing technology[J]. Measurement, 2018, 122: 57- 65
doi: 10.1016/j.measurement.2018.03.018
57 YE X W, SU Y H, HAN J P Structural health monitoring of civil infrastructure using optical fiber sensing technology: a comprehensive review[J]. Scientific World Journal, 2014, 652329
58 INAUDI D, GLISIC B Long-range pipeline monitoring by distributed fiber optic sensing[J]. Journal of Pressure Vessel Technology, 2010, 132 (1): 763- 772
59 MADDITOT K, MAHESHAN C M, KUMAR H P Monitoring of corrosions and leakages in gas pipelines and a safety technique using LabVIEW[J]. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 2016, 8 (5): 6910- 6916
60 GLISIC B, YAO Y Fiber optic method for health assessment of pipelines subjected to earthquake-induced ground movement[J]. Structural Health Monitoring, 2012, 11 (6): 696- 711
doi: 10.1177/1475921712455683
61 FENG X, HAN Y, WANG Z, et al Structural performance monitoring of buried pipelines using distributed fiber optic sensors[J]. Journal of Civil Structural Health Monitoring, 2018, 8 (3): 1- 8
[1] 万有财,张雷,李明,刘斌,梅元贵. 山区高速列车车体动态当量泄漏面积阈值[J]. 浙江大学学报(工学版), 2021, 55(4): 695-703.
[2] 王力,刘世忠,路韡,牛思胜,施鑫磊. 新型波形钢腹板组合箱梁温度效应[J]. 浙江大学学报(工学版), 2021, 55(4): 675-683.
[3] 曾超峰,王硕,袁志成,薛秀丽. 考虑邻近结构阻隔影响的基坑开挖前降水引发地层变形的特性[J]. 浙江大学学报(工学版), 2021, 55(2): 338-347.
[4] 陈杨波,伊国栋,张树有. 基于点云特征对比的曲面翘曲变形检测方法[J]. 浙江大学学报(工学版), 2021, 55(1): 81-88.
[5] 王泽胜,李研彪,罗怡沁,孙鹏,陈波,郑航. 七自由度冗余混联机械臂的动力学分析[J]. 浙江大学学报(工学版), 2020, 54(8): 1505-1515.
[6] 龚顺风,徐勤贵,周家伟,王喜鹏,刘承斌. 外压作用下深海腐蚀缺陷管道的屈曲失稳机理[J]. 浙江大学学报(工学版), 2020, 54(7): 1401-1410.
[7] 余亚波,邓亚东. 燃料电池客车高压舱氢气泄漏扩散[J]. 浙江大学学报(工学版), 2020, 54(2): 381-388.
[8] 张虎,左逢源,张德胜,施卫东. 绕水翼间隙涡结构形成机理与间隙几何影响[J]. 浙江大学学报(工学版), 2020, 54(12): 2344-2355.
[9] 李亚峰,聂如松,冷伍明,程龙虎,梅慧浩,董俊利. 间歇性循环荷载作用下细粒土的变形特性[J]. 浙江大学学报(工学版), 2020, 54(11): 2109-2119.
[10] 闫东明,黄之昊,陈功,钱昊,邓嘉华,刘毅. 低温烧结活性瓷釉涂层钢筋耐腐蚀性能试验研究[J]. 浙江大学学报(工学版), 2020, 54(1): 56-63.
[11] 陈剑,张进华,朱林波,洪军. 粗糙表面弹塑性微接触模型分析与改进[J]. 浙江大学学报(工学版), 2019, 53(9): 1674-1680.
[12] 黄智,贾臻杰,邓涛,刘永超,杜丽. 基于支持向量机的静压转台热误差补偿[J]. 浙江大学学报(工学版), 2019, 53(8): 1594-1601.
[13] 蒋君侠,董琛,边晨,董辉跃. 卧式双机联合自动钻铆系统综合刚度研究[J]. 浙江大学学报(工学版), 2019, 53(6): 1110-1118.
[14] 胡亚元,王超. 基于变形功的有效应力力学机理探究[J]. 浙江大学学报(工学版), 2019, 53(5): 925-931.
[15] 季宪泰,文世峰,魏青松,周燕,陈志平. 淬火处理对激光选区熔化成形S136组织与性能的影响[J]. 浙江大学学报(工学版), 2019, 53(4): 664-670.