Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (9): 1674-1680    DOI: 10.3785/j.issn.1008-973X.2019.09.005
机械工程     
粗糙表面弹塑性微接触模型分析与改进
陈剑1(),张进华1,朱林波2,*(),洪军1
1. 西安交通大学 现代设计及转子轴承系统教育部重点实验室,陕西 西安,710049
2. 西安交通大学 化学工程与技术学院,陕西 西安,710049
Analysis and improvement on elastic-plastic micro-contact modelof rough surface
Jian CHEN1(),Jin-hua ZHANG1,Lin-bo ZHU2,*(),Jun HONG1
1. Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an Jiaotong University , Xi’an 710049, China
2. School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
 全文: PDF(1216 KB)   HTML
摘要:

为了准确描述粗糙表面微接触特性,对比分析现有插值多项式类和幂指函数类微接触模型存在的不足,采用量纲归一化方法,提出一种考虑材料属性的弹塑性微接触改进模型. 与现有模型相比,改进后的微接触模型在屈服临界点和全塑性临界点处具有良好的连续性和光滑性,且考虑了材料泊松比对最大接触压力因子的影响. 结果表明:较经典的KE模型和Lin模型,提出的模型能够连续、光滑和单调地描述微接触特性;微凸体接触面积与材料泊松比无关,且不受最大接触压力因子取值的影响;微凸体的平均接触压力、接触载荷和接触刚度与材料泊松比相关,且与最大接触压力因子成正比.

关键词: 微接触弹塑性变形插值多项式幂指函数材料属性粗糙表面    
Abstract:

The shortcomings of existing interpolation polynomial and power-exponential micro-contact models were compared and analyzed, in order to accurately describe the micro-contact characteristics of rough surfaces. An improved elastic-plastic micro-contact model considering the material properties was proposed using a normalization method. Compared with the existing models, the improved model has good continuity and smoothness at the yield critical and full plastic critical points, also taking into account the influence of material’s Poisson’s ratio on the maximum contact pressure factor. Results show that the proposed model can describe the micro-contact characteristics more continuously, smoothly and monotonously, compared with the classical KE model and Lin model; the contact area of asperity is independent of the Poisson's ratio of the material, and is not affected by the maximum contact pressure factor; and the average contact pressure, contact load and contact stiffness of asperity are related to the Poisson's ratio, which are also proportional to the maximum contact pressure factor.

Key words: micro-contact    elastic-plastic deformation    interpolation polynomial    power exponential function    material properties    rough surface
收稿日期: 2018-11-30 出版日期: 2019-09-12
CLC:  O 343  
通讯作者: 朱林波     E-mail: jxfb0602@163.com;linbozhu@mail.xjtu.edu.cn
作者简介: 陈剑(1985—),男,博士生,从事装配连接研究. orcid.org/0000-0002-8369-6597. E-mail: jxfb0602@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
陈剑
张进华
朱林波
洪军

引用本文:

陈剑,张进华,朱林波,洪军. 粗糙表面弹塑性微接触模型分析与改进[J]. 浙江大学学报(工学版), 2019, 53(9): 1674-1680.

Jian CHEN,Jin-hua ZHANG,Lin-bo ZHU,Jun HONG. Analysis and improvement on elastic-plastic micro-contact modelof rough surface. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1674-1680.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.09.005        http://www.zjujournals.com/eng/CN/Y2019/V53/I9/1674

图 1  单微凸体与刚性光滑平面接触示意图
模型 微凸体接触特性 临界点
接触面积 平均接触压力 接触载荷 屈服 全塑性
ZMC[7] 4次多项式 对数多项式 接触面积和
平均接触压力的乘积
${\delta _{{\rm{ec}}}}$ $54{\delta _{{\rm{ec}}}}$
Zhao[8] ZMC模型 3.5次多项式 $110{\delta _{{\rm{ec}}}}$
Brake[9] 3次多项式 3次多项式 $110{\delta _{{\rm{ec}}}}$
Xu[10] Brake模型 椭圆曲线 $110{\delta _{{\rm{ec}}}}$
Li[11] 3次多项式 ZMC模型 $110{\delta _{{\rm{ec}}}}$
表 1  插值多项式类微接触模型比较
图 2  不同样板函数预测接触面积的比较
图 3  不同模型预测接触特性的比较
幂指表达式 KE模型[12] Lin模型[13] Wang模型[14]
α β α β α β
注:KE 模型有 2 个弹塑性变形区间(弹塑性区间Ⅰ: $1 \leqslant \delta /{\delta _{{\rm{ec}}}} \leqslant 6$;弹塑性区间Ⅱ: $6 \leqslant \delta /{\delta _{{\rm{ec}}}} \leqslant 110$),Lin 模型和 Wang 模型只有 1 个弹塑性变形区间.
$\frac{{{A_{{\rm{ep}}}}}}{{{A_{{\rm{ec}}}}}} = \alpha {\left( {\displaystyle\frac{\delta }{{{\delta _{{\rm{ec}}}}}}} \right)^\beta }$ 0.93 1.136 1.00 1.159 7 1.00 1.158 1
0.94 1.146
$\displaystyle\frac{{{p_{{\rm{ep}}}}}}{{\sigma }} = \alpha {\left( {\displaystyle\frac{\delta }{{{\delta _{{\text{ec}}}}}}} \right)^\beta }$ 1.19 0.289 1.08 0.220 4 1.00 0.209 1
1.61 0.117
$\frac{{{F_{{\rm{ep}}}}}}{{{F_{{\rm{ec}}}}}} = \alpha {\left( {\displaystyle\frac{\delta }{{{\delta _{{\rm{ec}}}}}}} \right)^\beta }$ 1.03 1.425 1.00 1.380 1 1.00 1.367 3
1.40 1.263
全塑性临界点 $\delta _{\rm pc2}^{\rm KE} = 110{\delta _{{\rm{ec}}}}$ $\delta _{\rm pc}^{\rm Lin} = 76.8{\delta _{{\rm{ec}}}}$ $\delta _{\rm pc}^{\rm Wang} = 80{\delta _{{\rm{ec}}}}$
表 2  幂指函数类模型中系数和指数比较
图 4  无量纲平均接触压力随无量纲变形的变化
图 5  最大接触压力因子随泊松比的变化
图 6  无量纲接触载荷随无量纲变形的变化
图 7  无量纲接触刚度随无量纲变形的变化
1 毛宽民, 黄小磊, 李斌, 等 一种机床固定结合部的动力学参数化建模方法[J]. 华中科技大学学报, 2012, 40 (4): 49- 53
MAO Kuan-min, HUANG Xiao-lei, LI Bin, et al Dynamic and parameterized modeling of fixed joints in machine tools using surface response method[J]. Journal of Huazhong University of Science and Technology, 2012, 40 (4): 49- 53
2 朱林波, 庄艳, 洪军, 等 一种考虑侧接触的微凸体弹塑性接触力学模型[J]. 西安交通大学学报, 2013, 47 (11): 48- 52
ZHU Lin-bo, ZHUANG Yan, HONG Jun, et al Elastic-plastic model for contact of two asperities considering shoulder-shoulder contact[J]. Journal Of Xi’an Jiaotong University, 2013, 47 (11): 48- 52
doi: 10.7652/xjtuxb201311009
3 张学良, 王南山, 温淑花, 等 机械结合面切向接触阻尼能量耗散弹塑性分形模型[J]. 机械工程学报, 2013, 49 (12): 43- 49
ZHANG Xue-liang, WANG Nan-shan, WEN Shu-hua, et al Elastoplastic fractal model for tangential contact damping energy dissipation of machine joint interfaces[J]. Journal of Mechanical Engineering, 2013, 49 (12): 43- 49
4 ABBOTT E J, FIRESTONE F A Specifying surface quality: a method based on accurate measurement and comparison[J]. Institution of Mechanical Engineers, 1933, 55: 572- 596
5 GREENWOOD J A, WILLIAMSON J B P Contact of nominally flat surfaces[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1966, 295 (1442): 300- 319
6 CHANG W R, ETSION I, BOGY D B An elastic-plastic model for the contact of rough surfaces[J]. Journal of Tribology, 1987, 109 (2): 257- 263
doi: 10.1115/1.3261348
7 ZHAO Y, MAIETTA D M, CHANG L An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow[J]. Journal of Tribology, 2000, 122 (1): 86- 93
doi: 10.1115/1.555332
8 赵永武, 吕彦明, 蒋建忠 新的粗糙表面弹塑性接触模型[J]. 机械工程学报, 2007, 43 (3): 95- 101
ZHAO Yong-wu, LU Yan-ming, JIANG Jian-zhong New elastic-plastic model for the contact of rough surface[J]. Journal of Mechanical Engineering, 2007, 43 (3): 95- 101
doi: 10.3321/j.issn:0577-6686.2007.03.016
9 BRAKE M R An analytical elastic-perfectly plastic contact model[J]. International Journal of Solids and Structures, 2012, 49 (22): 3129- 3141
doi: 10.1016/j.ijsolstr.2012.06.013
10 徐超, 王东 一种改进的粗糙表面法向弹塑性接触解析模型[J]. 西安交通大学学报, 2014, 48 (11): 115- 121
XU Chao, WANG Dong An improved analytical model for normal elastic-plastic contact of rough surfaces[J]. Journal Of Xi’an Jiaotong University, 2014, 48 (11): 115- 121
11 李玲, 蔡安江, 蔡力钢, 等 螺栓结合面微观接触模型[J]. 机械工程学报, 2016, 52 (7): 205- 212
LI Ling, CAI An-jiang, CAI Li-gang, et al Micro-contact model of bolted-joint interface[J]. Journal of Mechanical Engineering, 2016, 52 (7): 205- 212
12 KOGUT L, ETSION I Elastic-plastic contact analysis of a sphere and a rigid flat[J]. Journal of Applied Mechanics, 2002, 69 (5): 657- 662
doi: 10.1115/1.1490373
13 LIN L P, LIN J F An elastoplastic microasperity contact model for metallic materials[J]. Journal of Tribology, 2005, 127 (3): 666- 672
doi: 10.1115/1.1843830
14 王东, 徐超, 万强 一种考虑微凸体法向弹塑性接触的粗糙面力学模型[J]. 上海交通大学学报, 2016, 50 (8): 1264- 1269
WANG Dong, XU Chao, WAN Qiang A normal mechanical model for elastic-plastic contact of rough surface[J]. Journal of Shanghai Jiaotong University, 2016, 50 (8): 1264- 1269
15 FRANCIS H A Phenomenological analysis of plastic spherical indentation[J]. Journal of Engineering Materials and Technology Transactions of the ASME, 1976, 98 (3): 272- 281
doi: 10.1115/1.3443378
16 黄筑平. 连续介质力学基础[M]. 北京: 高等教育出版社, 2012.
[1] 汪久根,冯兰兰,李阳. 粗糙表面形貌对电蚀的影响[J]. 浙江大学学报(工学版), 2015, 49(11): 2025-2032.
[2] 刘会静, 洪军, 杨国庆, 朱林波. 微凸体切向滑移特性[J]. 浙江大学学报(工学版), 2014, 48(6): 1114-1119.
[3] 魏昊岩,李忠学,仲政. 新型九节点协同转动四边形弹塑性壳单元[J]. J4, 2012, 46(3): 424-430.
[4] 徐敬华, 张树有, 伊国栋, 屠立, 光耀. 面向目标变异的操作臂运动学优化设计[J]. J4, 2011, 45(2): 209-216.