Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (7): 1401-1410    DOI: 10.3785/j.issn.1008-973X.2020.07.019
交通工程、水利工程、土木工程     
外压作用下深海腐蚀缺陷管道的屈曲失稳机理
龚顺风1(),徐勤贵1,周家伟2,王喜鹏1,刘承斌1
1. 浙江大学 结构工程研究所,浙江 杭州 310058
2. 浙江大学建筑设计研究院有限公司,浙江 杭州 310028
Buckle and collapse mechanisms of deep-sea corrosion defect pipes under external pressure
Shun-feng GONG1(),Qin-gui XU1,Jia-wei ZHOU2,Xi-peng WANG1,Cheng-bin LIU1
1. Institute of Structural Engineering, Zhejiang University, Hangzhou 310058, China
2. Architectural Design and Research Institute of Zhejiang University Limited Company, Hangzhou 310028, China
 全文: PDF(2092 KB)   HTML
摘要:

为了研究外压作用下深海腐蚀缺陷管道的屈曲失稳机理,通过深海压力舱小比例模型试验,测得钢管试件发生屈曲失稳时的压力和变形形态. 利用有限元软件ABAQUS建立管道的三维数值模型,模拟外压作用下完好无损管道和腐蚀缺陷管道的准静态屈曲失稳过程,得到钢管的压力-直径变化曲线和变形形态,与试验结果吻合良好. 采用建立的数值模拟方法,分析管道长度、径厚比、初始椭圆率、钢材等级、钢材应变硬化特性和缺陷几何尺寸等因素对腐蚀缺陷管道屈曲失稳的影响. 结果表明,初始椭圆率、缺陷几何尺寸、钢材应变硬化特性是深海腐蚀缺陷管道标准化后失稳压力的主要影响因素,管道长度、径厚比、钢材等级对标准化后失稳压力的影响相对较小.

关键词: 管道腐蚀缺陷屈曲失稳深海外压    
Abstract:

The small-scale model experiments for steel tube specimens were conducted in a deep-sea hyperbaric chamber to measure the pressure and deformation configurations when the buckle and collapse occurred in order to analyze the buckle and collapse mechanisms of deep-sea corrosion defect pipes under external pressure. A three-dimensional numerical model of the pipe was established using the finite element software ABAQUS to simulate the quasi-static collapsing process of intact and corrosion defect pipes under external pressure. The pressure-change in diameter response curves and deformation configurations of steel pipes accorded well with the experimental results. The effects of pipe length, diameter-to-thickness ratio, initial ovality, steel grade, strain hardening characteristic of steel and geometric size of defects on the buckle and collapse of corrosion defect pipes were analyzed by using the developed numerical simulation method. Results show that initial ovality, geometric size of defects, and strain hardening characteristic of steel are the major factors affecting the normalized collapse pressure of deep-sea corrosion defect pipes, while the effects of pipe length, diameter-to-thickness ratio, and steel grade on the normalized collapse pressure are comparatively small.

Key words: pipe    corrosion defect    buckle and collapse    deep sea    external pressure
收稿日期: 2019-06-24 出版日期: 2020-07-05
CLC:  TE 973  
基金资助: 国家自然科学基金资助项目(51779223,51479176,51009122)
作者简介: 龚顺风(1975—),男,教授,从事深水海底管道研究. orcid.org/0000-0002-4184-9639. E-mail: sfgong@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
龚顺风
徐勤贵
周家伟
王喜鹏
刘承斌

引用本文:

龚顺风,徐勤贵,周家伟,王喜鹏,刘承斌. 外压作用下深海腐蚀缺陷管道的屈曲失稳机理[J]. 浙江大学学报(工学版), 2020, 54(7): 1401-1410.

Shun-feng GONG,Qin-gui XU,Jia-wei ZHOU,Xi-peng WANG,Cheng-bin LIU. Buckle and collapse mechanisms of deep-sea corrosion defect pipes under external pressure. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1401-1410.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.07.019        http://www.zjujournals.com/eng/CN/Y2020/V54/I7/1401

图 1  屈曲失稳实验装置示意图
试件编号 l/mm c/(°) d/mm
TD1 89 18 1.35
TD2 89 18 1.8
TD3 89 18 2.25
TD4 89 18 2.7
TD5 89 18 3.15
TD6 44.5 18 2.7
TD7 133.5 18 2.7
TD8 178 18 2.7
TD9 89 9 2.7
TD10 89 27 2.7
TD11 89 36 2.7
表 1  试件腐蚀缺陷几何尺寸
图 2  椭圆形腐蚀缺陷试件
图 3  试验装置与试件变形前后图
图 4  试件材料的应力-应变曲线
图 5  试件压力-时间变化曲线
试件编号 l/D c/(πD) d/t 失稳模式 pCOR/MPa ${p_{_{ {\rm{COR} } } }}/{\hat p_{_{ {\rm{CO} } } }}$
TD1 1.00 0.05 0.30 模式1 22.41 0.976
TD2 1.00 0.05 0.40 模式1 21.79 0.949
TD3 1.00 0.05 0.50 模式1 19.88 0.866
TD4 1.00 0.05 0.60 模式2 18.27 0.796
TD5 1.00 0.05 0.70 模式2 16.80 0.732
TD6 0.50 0.05 0.60 模式1 21.55 0.939
TD7 1.50 0.05 0.60 模式2 16.70 0.728
TD8 2.00 0.05 0.60 模式3 16.21 0.706
TD9 1.00 0.025 0.60 模式1 20.12 0.877
TD10 1.00 0.075 0.60 模式2 17.19 0.749
TD11 1.00 0.10 0.60 模式2 16.88 0.736
表 2  钢管试件试验结果
图 6  钢管试件变形前、后图
图 7  试件有限元模型
图 8  试件数值模拟压力-直径变化曲线
图 9  试件变形前、后图
试件编号 pCOR/MPa $ {{\hat p}_{_{{\rm{COR}}}}}/{\rm{MPa}}$ e/%
TD1 22.41 22.30 ?0.49
TD2 21.79 21.59 ?0.92
TD3 19.88 20.33 2.26
TD4 18.27 18.67 2.18
TD5 16.80 17.01 1.25
TD6 21.55 21.27 1.30
TD7 16.70 17.19 2.93
TD8 16.21 16.33 0.74
TD9 20.12 19.93 ?0.94
TD10 17.19 17.79 3.49
TD11 16.88 16.90 0.12
表 3  试件失稳压力模拟结果与试验值的比较
图 10  试件变形形态模拟和试验结果的比较
图 11  钢管试件失稳压力和缺陷尺寸的关系
图 12  不同管道长度下失稳压力和缺陷深度的关系
图 13  不同径厚比下失稳压力和缺陷深度的关系
图 14  不同初始椭圆率下失稳压力和缺陷深度的关系
图 15  不同钢材等级下失稳压力和缺陷深度的关系
图 16  不同应变硬化特性下失稳压力和缺陷深度的关系
图 17  不同腐蚀缺陷深度下失稳压力和缺陷长度的关系
图 18  不同腐蚀缺陷长度下失稳压力和缺陷深度的关系
图 19  不同腐蚀缺陷宽度下失稳压力和缺陷深度的关系
1 YEH M K, KYRIAKIDES S Collapse of deepwater pipelines[J]. Journal of Energy Resources Technology, 1988, 110 (1): 1- 11
doi: 10.1115/1.3231355
2 PARK T D On the collapse of dented cylinders under external pressure[J]. International Journal of Mechanical Sciences, 1996, 38 (5): 557- 578
doi: 10.1016/0020-7403(95)00065-8
3 PAPADAKIS G Buckling of thick cylindrical shells under external pressure: a new analytical expression for the critical load and comparison with elasticity solutions[J]. International Journal of Solids and Structures, 2008, 45 (20): 5308- 5321
doi: 10.1016/j.ijsolstr.2008.05.027
4 LE GROGNEC P, CASARI P, CHOQUEUSE D Influence of residual stresses and geometric imperfections on the elastoplastic collapse of cylindrical tubes under external pressure[J]. Marine Structures, 2009, 22 (4): 836- 854
doi: 10.1016/j.marstruc.2009.09.003
5 龚顺风, 陈源, 金伟良, 等 高静水压力作用下深海油气管道的局部屈曲[J]. 浙江大学学报: 工学版, 2012, 46 (1): 14- 19
GONG Shun-feng, CHEN Yuan, JIN Wei-liang, et al Local buckling of deepwater oil-gas pipeline under high hydrostatic pressure[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (1): 14- 19
6 余建星, 卞雪航, 余杨, 等 深水海底管道全尺寸压溃试验及数值模拟[J]. 天津大学学报: 自然科学与工程技术版, 2012, 45 (2): 154- 159
YU Jian-xing, BIAN Xue-hang, YU Yang, et al Full-scale collapse test and numerical simulation of deepwater pipeline[J]. Journal of Tianjin University: Natural Science and Engineering Technology Edition, 2012, 45 (2): 154- 159
7 GONG S F, NI X Y, BAO S, et al Asymmetric collapse of offshore pipelines under external pressure[J]. Ships Offshore Structures, 2013, 8 (2): 176- 188
doi: 10.1080/17445302.2012.691273
8 HE T, DUAN M, AN C Prediction of the collapse pressure for thick-walled pipes under external pressure[J]. Applied Ocean Research, 2014, 47 (9): 199- 203
9 龚顺风, 胡勍 外压作用深海夹层管复合结构屈曲失稳分析[J]. 浙江大学学报: 工学版, 2014, 48 (9): 1624- 1631
GONG Shun-feng, HU Qing Buckling and collapse analyses of composite structures for deepwater sandwich pipes under external pressure[J]. Journal of Zhejiang University: Engineering Science, 2014, 48 (9): 1624- 1631
10 龚顺风, 王喜鹏, 李根, 等 层间黏结性能对夹层管屈曲传播的影响机理[J]. 浙江大学学报: 工学版, 2018, 52 (5): 0819- 0827
GONG Shun-feng, WANG Xi-peng, LI Gen, et al Influencing mechanisms of inter-layer adhesion behavior on buckle propagation of sandwich pipes[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (5): 0819- 0827
11 FATT M S H Elastic-plastic collapse of non-uniform cylindrical shells subjected to uniform external pressure[J]. Thin-Walled Structures, 1999, 35 (2): 117- 137
doi: 10.1016/S0263-8231(99)00021-X
12 XUE J, FATT M S H Buckling of a non-uniform, long cylindrical shell subjected to external hydrostatic pressure[J]. Engineering Structures, 2002, 24 (8): 1027- 1034
doi: 10.1016/S0141-0296(02)00029-9
13 NETTO T A, FERRAZ U S, BOTTO A On the effect of corrosion defects on the collapse pressure of pipelines[J]. International Journal of Solids and Structures, 2007, 44 (22/23): 7597- 7614
doi: 10.1016/j.ijsolstr.2007.04.028
14 SAKAKIBARA N, KYRIAKIDES S, CORONA E Collapse of partially corroded or worn pipe under external pressure[J]. International Journal of Mechanical Sciences, 2008, 50 (12): 1586- 1597
doi: 10.1016/j.ijmecsci.2008.10.006
15 NETTO T A On the effect of narrow and long corrosion defects on the collapse pressure of pipelines[J]. Applied Ocean Research, 2009, 31 (2): 75- 81
doi: 10.1016/j.apor.2009.07.004
16 NETTO T A A simple procedure for the prediction of the collapse pressure of pipelines with narrow and long corrosion defects - correlation with new experimental data[J]. Applied Ocean Research, 2010, 32 (1): 132- 134
doi: 10.1016/j.apor.2009.12.007
17 YAN S T, SHEN X L, JIN Z J On instability failure of corroded rings under external hydrostatic pressure[J]. Engineering Failure Analysis, 2015, 55: 39- 54
18 YE H, YAN S T, JIN Z J Collapse of corroded pipelines under combined tension and external pressure[J]. Plos One, 2016, 11 (4): e0154314
doi: 10.1371/journal.pone.0154314
19 WANG H K, YU Y, YU J X, et al Effect of 3D random pitting defects on the collapse pressure of pipe — part I: experiment[J]. Thin-Walled Structures, 2018, 129: 512- 526
doi: 10.1016/j.tws.2018.04.015
20 WANG H K, YU Y, YU J X, et al Effect of 3D random pitting defects on the collapse pressure of pipe — part II: numerical analysis[J]. Thin-Walled Structures, 2018, 129: 527- 541
doi: 10.1016/j.tws.2018.04.014
21 金属材料拉伸试验第1部分: 室温试验方法: GB/T 228.1-2010 [S]. 北京: 中国标准出版社, 2010.
22 CHAKRABARTY J. Theory of plasticity [M]. Oxford: Elsevier, 2006.
23 LAM W F, MORLEY C T Arc-length method for passing limit points in structural calculation[J]. Journal of Structural Engineering, 1992, (1): 169- 185
[1] 朱斌,蒋楠,周传波,贾永胜,罗学东,吴廷尧. 粉质黏土层直埋铸铁管道爆破地震效应[J]. 浙江大学学报(工学版), 2021, 55(3): 500-510.
[2] 翁杭建,党晓娟,张晓晶. 错位装配串联蜂窝结构缓冲吸能特性[J]. 浙江大学学报(工学版), 2020, 54(12): 2329-2335.
[3] 张玉琦,蒋楠,贾永胜,周传波,罗学东,吴廷尧. 运营充水状态高密度聚乙烯管的爆破振动响应特性[J]. 浙江大学学报(工学版), 2020, 54(11): 2120-2127.
[4] 龚顺风, 王喜鹏, 李根, 刘承斌. 层间黏结性能对夹层管屈曲传播的影响机理[J]. 浙江大学学报(工学版), 2018, 52(5): 819-827.
[5] 申屠华斌, 柳景青, 叶萍, 李杭加, 徐兵, 彭宏熙, 王磊. 滞流前后管道生物膜微生物群落径向分布差异[J]. 浙江大学学报(工学版), 2017, 51(7): 1317-1323.
[6] 杜洋, 马利, 郑津洋, 张帆, 张安达. 考虑流固耦合的管道爆炸后果预测与分析[J]. 浙江大学学报(工学版), 2017, 51(3): 429-435.
[7] 李素贞, 李翔. 水平定向穿越钢管回拖力的分析与实测[J]. 浙江大学学报(工学版), 2016, 50(4): 714-719.
[8] 柳景青, 罗志逢, 周晓燕, 何晓芳, 任红星, 胡宝兰, 裘尚德. 水流剪切力对供水管道管壁生物膜生长的影响[J]. 浙江大学学报(工学版), 2016, 50(2): 250-256.
[9] 刘宜军,鲁欢,张桂勇,宗智. 采用单元基光滑点插值法的高温管道热应力分析[J]. 浙江大学学报(工学版), 2016, 50(11): 2113-2119.
[10] 雷明玮, 龚顺风, 胡勍. 纯弯作用下深海夹层管复合结构屈曲失稳分析[J]. 浙江大学学报(工学版), 2015, 49(12): 2376-2386.
[11] 龚顺风,胡勍. 外压作用深海夹层管复合结构屈曲失稳分析[J]. 浙江大学学报(工学版), 2014, 48(9): 1624-1631.
[12] 刘念武,龚晓南,楼春晖. 软土地区基坑开挖对周边设施的变形特性影响[J]. 浙江大学学报(工学版), 2014, 48(7): 1141-1147.
[13] 邵卫云, 马妍, 周永潮, 杜旭, 关垚. 生物作用下排水管道沉积物的冲蚀特性[J]. 浙江大学学报(工学版), 2014, 48(6): 1075-1079.
[14] 徐海巍,余世策,楼文娟. 开孔结构内压脉动影响因子的试验研究[J]. J4, 2014, 48(3): 487-491.
[15] 宋月超, 徐兵, 杨华勇, 张军辉. 改进的柱塞泵流量脉动“实用近似”测试法[J]. J4, 2014, 48(2): 200-205.