Please wait a minute...
浙江大学学报(工学版)
土木工程     
软土地区基坑开挖对周边设施的变形特性影响
刘念武,龚晓南,楼春晖
1. 浙江大学 滨海和城市岩土工程研究中心, 浙江 杭州 310058;2. 浙江大学 软弱土与环境土工教育部重点实验室,浙江 杭州 310058
Deformation behavior of nearby facilities analysis induced by excavation in soft clay
LIU Nian-wu1,2, GONG Xiao-nan1,2, LOU Chun-hui1,2
1.Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China; 2.MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1216 KB)   HTML
摘要:

为了研究基坑开挖对周围管道、建筑、道路的影响,2个狭长形地铁车站深基坑不同位置处土体的侧向位移、土体沉降、管道沉降、建筑沉降等资料的监测数据在开挖过程中被记录.通过分析现场监测资料发现,地表沉降与监测点基坑围护结构距离的关系呈三折线模型,管道沉降与土体沉降有一定的相关性,燃气管道、给水管道和污水管道的沉降平均值占地表沉降平均值的比例分别为943%、587%、653%.管道沉降和地表沉降的变化趋势相似且均呈一定的空间效应,随着L/He的增大,土体沉降及管道沉降的平面应变比(PSR)呈先增大后变化缓慢的趋势,刚度较小的燃气管道的三维效应与土体沉降的三维效应变化相似.距离基坑15 m处桥台的最大沉降差发生在距离开挖边缘-5 ~5 m处,差异沉降为088×10-3,桥台最大沉降值发生在靠近基坑中心位置处,最大达2432 mm.随着时间的增长,管道沉降和地表沉降均呈现先增大后保持稳定的趋势,底板完成时,管道沉降和地表沉降占最终沉降的比例分别为85%和80%.

Abstract:

A series of field monitoring exercise including lateral displacement, soil settlement, pipeline settlement and building settlement were conducted into two similar subway station deep foundation pit in order to analyze the effect of excavation on the surrounding pipelines, buildings and roads. Field monitored data indicate that concave pattern was proposed for the surface settlement profiles and the pipeline settlement has a relevance to the surface settlement. The proportion of the average gas pipelines settlement, water pipeline, sewer line to the average surface settlement is 943%, 587%, 653%, respectively. Pipeline settlements and surface settlements showed a three-dimensional (3D) effect and the values of plain strain ratio (PSR) of pipelines settlements and surface settlements increased first and then changed slowly as L/He increases. The three-dimensional effects of gas pipeline settlement were similar to that of surface settlement because of its smaller stiffness. The maximum differential settlement occured between -5 m to 5 m from the excavation face and reached the value of 088 mm/m. The maximum settlement occured near the centre of the excavation and reached the value of 2432 mm. The pipeline settlement and surface settlement increased first and then maintained stable. The proportion of the pipeline settlement and surface settlement to the final settlement was 85% and 80% when the base slab was completed.

出版日期: 2014-08-04
:  TU 473  
基金资助:

国家自然科学基金资助项目(51078377)

通讯作者: 龚晓南,男,中国工程院院士.     E-mail: xngong@hzcnc.com
作者简介: 刘念武(1987-),男,博士生,从事桩和基坑的研究. Email: zjulnw@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

刘念武,龚晓南,楼春晖. 软土地区基坑开挖对周边设施的变形特性影响[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.07.001.

LIU Nian-wu1,2, GONG Xiao-nan1,2, LOU Chun-hui1,2. Deformation behavior of nearby facilities analysis induced by excavation in soft clay. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.07.001.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.07.001        http://www.zjujournals.com/eng/CN/Y2014/V48/I7/1141

[1] 侯学渊,刘国彬,黄院雄. 城市基坑工程发展的几点看法[J].施工技术,2000, 29(1):57.
HOU Xue-yuan,LIU Guo-bin,HUANG Yuan-xiong. Several views on the development of urban foundation work [J]. Construction Technology, 2000, 29(1):57.
[2] 李大勇.软土地基深基坑工程邻近地下管线的性状研究[D].杭州:浙江大学, 2001.
LI Da-yong. Analysis of performance of buried pipelines induced by deep excavation in soft clay [D]. Hangzhou: Zhejiang University, 2001.
[3] 李大勇,龚晓南,张土乔. 深基坑工程中地下管线位移影响因素分析[J].岩石力学与工程学报, 2001, 20(增1):1083-1087.
LI Da-yong,GONG Xiao-nan,ZHANG Tu-qiao. Analysis on impact of excavation of deep foundation pits on buried pipelines[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(supp.1):1083-1087.
[4] 李大勇,龚晓南,张土乔.软土地基基坑周围地下管线保护措施的数值模拟[J].岩土工程学报,2001, 23(6):736-740.
LI Da-yong,GONG Xiao-nan,ZHANG Tu-qiao. Numerical simulation of the buried pipelines protection adjacent to deep excavation [J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6):736-740.
[5] 李大勇,吕爱钟,曾庆军.内撑式基坑工程周围地下管线的性状分析[J].岩石力学与工程学报, 2004, 23(4): 682-687.
LI Da-yong, LV Ai-zhong, ZENG Qing-jun. Behavior analysis of buried pipeline response to nearby excavation pit with braced retaining structure [J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(4): 682-687.
[6] 张孟喜,黄瑾,王玉玲.基坑开挖对地下管线影响的有限元分析及神经网络预测[J].岩土工程学报,2006, 28(增刊):1350-1354.
ZHANG Meng-xi,HUANG Jin,WANG Yu-ling. Finite element analysis and neural-network prediction of deformation of underground pipelines affected by excavation [J]. Chinese Journal of Geotechnical Engineering, 2006, 28(supplement):1350-1354.
[7] 张陈蓉,蔡建鹏,黄茂松. 基坑开挖对邻近地埋管线的影响分析[J].岩土工程学报, 2010, 32(增2): 14157.
ZHANG Chen-rong, CAI Jian-peng, HUANG Mao-song. Influence of deep excavation on adjacent underground pipelines [J]. Journal of Geotechnical Engineering, 2010, 32(supp.2): 14157.
[8] 刘建航.基坑工程手册[M].北京:中国建筑工业出版社,1997.
[9] 李大勇,龚晓南.软土地基深基坑工程邻近柔性接口地下管线的性状分析[J].土木工程学报,2003,36(2):77-80.
LI Da-yong, GONG Xiao-nan.Response of joined ductile pipeline to deep excavation in soft soil [J].China Civil Engineering Journal, 2003, 36(2):77-80.
[10] 张爱军,莫海鸿,李爱国,等.基坑开挖对邻近桩基影响的两阶段分析方法[J].岩石力学与工程学报, 2013, 32(增1):2746-2750.
ZHANG Ai-jun, MO Hai-hong, LI Ai-guo, et al. Two stage analysis method for behavior of adjacent piles due to foundation pit excavation [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(supp.1):2746-2750.
[11] 杨敏,周洪波,杨桦.基坑开挖与邻近桩基相互作用分析[J]. 土木工程学报,2005,38(4):91-96.
YANG Min,ZHOU Hong-bo,YANG Hua. Numerical analysis of pile response due to unsupported excavation-induced later soil movement [J]. China Civil Engineering Journal,2005,38(4):91-96.
[12] 郑刚,颜志雄,雷华阳,等.基坑开挖对临近桩基影响的实测及有限元数值模拟分析[J].岩土工程学报,2007,29(5):638-643.
ZHENG Gang,YAN Zhi-xiong,LEI Hua-yang,et al. Field observation and finite element numerical simulation analysis of effect on adjacent piles due to excavation [J]. Chinese Journal of Geotechnical Engineering,2007,29(5):638-643.
[13] POULOS H G, CHEN L T. Pile response due to unsupported excavation-induced lateral soil movement [J]. Canadian Geotechnical Journal, 1996, 33(6): 670-677.
[14] 王翠,闫澍旺,张启斌.深基坑开挖对邻近桥桩的影响机制及控制措施研究[J].岩石力学与工程学报,2010,29(增1):2994-3000.
WANG Cui,YAN Shu-wang,ZHANG Qi-bin. Study of influence of deep pit excavation on adjacent bridge foundation piles [J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(supp.1):2994-3000.
[15] OU C Y, LIAO J T, CHENG W L. Building response and ground movements induced by a deep excavation [J]. Geotechnique, 2000, 50(3): 209-220.
[16] HSIEH P G, OU C Y. Shape of ground surface settlement profiles caused by excavation [J]. Canadian Geotechnical Journal, 1998, 35(6): 1004-1017.
[17] SCHUSTER M, KUNG G T C, JUANG C H, et al. Simplified model for evaluating damage potential of buildings adjacent to a braced excavation [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(12): 1823-1835.
[18] OU C Y, CHIOU D C, WU T S. Three-dimensional finite element analysis of deep excavations [J]. Journal of Geotechnical Engineering, 1996, 122(5): 337-345.
[19] 杜金龙,杨敏.深基坑开挖对邻近地埋管线影响分析[J].岩石力学与工程学报, 2009, 28(增1): 3015-3020.
DU Jin-long, YANG Min. Influence analysis of excavation of deep pit on adjacent buried pipelines [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(supp.1):3015-3020.
[20] FINNO R J, BRYSON L S. Response of a building adjacent to stiff excavation support system in soft clay [J]. Journal of Performance of Constructed Facilities, 2002, 16(1): 1020.

[1] 吴意谦,朱彦鹏. 潜水地区基坑降水诱发地面沉降的一种改进算法[J]. 浙江大学学报(工学版), 2016, 50(11): 2188-2197.
[2] 袁炳祥, 吴跃东, 陈锐, 冯仲文, 汪亦显. 侧向受荷桩周土体内部位移场的模型试验研究[J]. 浙江大学学报(工学版), 2016, 50(10): 2031-2036.
[3] 徐铨彪,陈刚,贺景峰,龚顺风. 复合配筋混凝土预制方桩抗弯性能试验[J]. 浙江大学学报(工学版), 2016, 50(9): 1768-1776.
[4] 单华峰, 夏唐代, 俞峰, 胡军华, 潘金龙. 地下增层开挖托换桩的屈曲稳定临界荷载分析[J]. 浙江大学学报(工学版), 2016, 50(8): 1425-1430.
[5] 何奔,王欢,洪义,王立忠,赵长军,秦肖. 竖向荷载对黏土地基中单桩水平受荷性能的影响[J]. 浙江大学学报(工学版), 2016, 50(7): 1221-1229.
[6] 邱子义,韩同春,豆红强,李智宁. 桩后及桩侧土拱共同作用的抗滑桩桩间距分析[J]. 浙江大学学报(工学版), 2016, 50(3): 551-558.
[7] 庾焱秋,王奎华,吕述晖,徐礼阁. 传感器黏结剂对低应变测试曲线的影响[J]. 浙江大学学报(工学版), 2015, 49(9): 1725-1730.
[8] 苟尧泊,俞峰,夏唐代. 增层开挖引起既有预制桩残余应力释放分析[J]. 浙江大学学报(工学版), 2015, 49(5): 969-974.
[9] 刘念武, 龚晓南, 俞峰. 大直径钻孔灌注桩的竖向承载性能[J]. 浙江大学学报(工学版), 2015, 49(4): 763-768.
[10] 王奎华,李振亚,吕述晖,张鹏,庾焱秋. 静钻根植竹节桩纵向振动特性及应用研究[J]. 浙江大学学报(工学版), 2015, 49(3): 522-530.
[11] 龙凡, 王立忠, 李凯, 李玲玲. 舟山黏土和温州黏土灵敏度差别成因[J]. 浙江大学学报(工学版), 2015, 49(2): 218-224.
[12] 王奎华,陈鑫,吕述晖,吴文兵,李振亚. 自由振动时带承台单桩的纵向动力特性[J]. 浙江大学学报(工学版), 2014, 48(9): 1595-1602.
[13] 伍程杰, 龚晓南, 俞峰, 楼春晖, 刘念武. 既有高层建筑地下增层开挖桩端阻力损失[J]. 浙江大学学报(工学版), 2014, 48(4): 671-678.
[14] 胡安峰, 张光建, 贾玉帅, 张晓冬. 刚度衰减模型在大直径桩累积侧向位移分析中的应用[J]. J4, 2014, 48(4): 721-726.
[15] 王忠瑾,谢新宇,方鹏飞,李金柱,金伟良. 刚性长短组合桩的非线性沉降计算分析[J]. J4, 2014, 48(3): 463-470.