Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (7): 1411-1417    DOI: 10.3785/j.issn.1008-973X.2020.07.020
交通工程、水利工程、土木工程     
超声波提高微生物固化砂土效果的试验研究
刘志明1,2(),彭劼1,2,*(),李杰1,2,宋恩润3
1. 河海大学 岩土力学与堤坝工程教育部重点实验室,江苏 南京 210098
2. 河海大学 江苏省岩土工程技术工程研究中心,江苏 南京 210098
3. 中建八局第二建设有限公司设计研究院,山东 济南 250014
Experimental study on improving effect of microorganism solidifying sand by ultrasonic
Zhi-ming LIU1,2(),Jie PENG1,2,*(),Jie LI1,2,En-run SONG3
1. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China
2. Jiangsu Research Center for Geotechnical Engineering Technology, Hohai University, Nanjing 210098, China
3. Design and Research Institute of the Second Construction Limited Company, China Construction Eighth Bureau, Jinan 250014, China
 全文: PDF(1239 KB)   HTML
摘要:

为了研究超声波对巴氏生孢八叠球菌及其诱导碳酸钙沉积能力的影响,利用超声(20 kHz)开展超声辐照时间(0~30 min)和超声功率强度(0~0.8 W/cm3)的正交试验,用超声处理后的菌液进行水溶液试验和砂柱加固试验. 测定菌液脲酶活性、OD600、细菌颗粒分布参数、碳酸钙的产量和加固后砂柱无侧限抗压强度. 分析超声辐照时间、超声功率强度、超声能量强度对碳酸钙产量的影响. 结果表明,超声辐照能够引发细菌产生生理强化反应,提高菌液脲酶活性. 当超声能量强度约为8 W·min/cm3时,超声辐照能够有效地提高菌液诱导生成碳酸钙的能力. 经优化的辐照策略(超声功率强度为0.4 W/cm3,处理时间为20 min)进行超声辐照处理后,水溶液中和砂柱中的碳酸钙产量分别提高了28.5%和35.6%,加固后砂样无侧限抗压强度为1.25 MPa,较对照组提高了91.6%.

关键词: 微生物诱导碳酸钙沉积(MICP)超声波脲酶活性碳酸钙产量辐照时间超声能量强度    
Abstract:

Orthogonal experiments of ultrasonic irradiation time (0-30 min) and ultrasonic power intensity (0-0.8 W/cm3) were conducted using ultrasound (20 kHz) in order to analyze ultrasonic effect on Sporosarcina pasteurii and its ability to induce calcium carbonate. Aqueous solution tests and sand column tests based on microbially induced carbonate precipitation were conducted using ultrasound-treated bacteria solution. Urease activity, OD600, distribution parameters of bacterial cells, amount of microbially induced CaCO3 and unconfined compressive strength of treated sand columns were measured. Effects of ultrasonic irradiation time, ultrasonic power intensity and ultrasonic energy intensity on CaCO3 amount were analyzed. Results show that ultrasonic irradiation can trigger physiological enhancement reaction of bacteria and improve the urease activity of bacterial liquid. Ultrasonic irradiation can effectively improve the ability of bacteria to induce CaCO3 with ultrasonic energy intensity of about 8 W·min/cm3. After bacterial solution was irradiated by ultrasound with the optimal irradiation strategy (ultrasonic power intensity of 0.4 W/cm3, treatment time of 20 minutes), CaCO3 amount in aqueous solution tests and sand column tests can be increased by 28.5% and 35.6% respectively. Unconfined compressive strength of MICP-treated sand sample was 1.25 MPa, which was increased by 91.6% than control samples.

Key words: microbially induced carbonate precipitation (MICP)    ultrasound    urease activity    precipitation amount of CaCO3    irradiation time    ultrasonic energy intensity
收稿日期: 2019-06-05 出版日期: 2020-07-05
CLC:  TU 52  
基金资助: 国家自然科学基金资助项目(51578214)
通讯作者: 彭劼     E-mail: lzm@hhu.edu.cn;peng-jie@hhu.edu.cn
作者简介: 刘志明(1994—),男,硕士生,从事微生物岩土工程的研究. orcid.org/0000-0002-7223-5744. E-mail: lzm@hhu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
刘志明
彭劼
李杰
宋恩润

引用本文:

刘志明,彭劼,李杰,宋恩润. 超声波提高微生物固化砂土效果的试验研究[J]. 浙江大学学报(工学版), 2020, 54(7): 1411-1417.

Zhi-ming LIU,Jie PENG,Jie LI,En-run SONG. Experimental study on improving effect of microorganism solidifying sand by ultrasonic. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1411-1417.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.07.020        http://www.zjujournals.com/eng/CN/Y2020/V54/I7/1411

图 1  标准砂级配曲线
PI/
(W·cm?3
t/min
0 10 20 30
0 O ? ? ?
0.2 ? A1 A2 A3
0.4 ? B1 B2 B3
0.6 ? C1 C2 C3
0.8 ? D1 D2 D3
表 1  超声辐照处理试验设计
图 2  菌液颗粒分布参数
图 3  菌液OD600与超声功率强度的关系
图 4  脲酶活性参数与辐照时间的关系
图 5  水溶液试验碳酸钙产量
EI/(W·min·cm?3 试验组别 EI/(W·min·cm?3 试验组别
2 A1 12 B3,C2
4 A2,B1 16 D2
6 A3,C1 18 C3
8 B2,D1 24 D3
表 2  各组试验的超声能量强度
图 6  脲酶活性及OD600随超声能量强度的变化
图 7  碳酸钙产量与超声能量强度的关系
图 8  砂柱加固试验中所选取各组超声参数
图 9  砂柱加固试验结果
1 BOQUET E, BORONAT A, RAMOS-CORMENZANA A Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon[J]. Nature, 1973, 246: 527- 529
doi: 10.1038/246527a0
2 LIAN J, XU H, HE X, et al Biogrouting of hydraulic fill fine sands for reclamation projects[J]. Marine Georesources and Geotechnology, 2018, 37 (8): 1- 11
3 彭劼, 冯清鹏, 孙益成 温度对微生物诱导碳酸钙沉积加固砂土的影响研究[J]. 岩土工程学报, 2018, 40 (6): 1048- 1055
PENG Jie, FENG Qing-peng, SUN Yi-cheng Experimental research on influence of temperature on MICP-treated soil[J]. Chinese Journal of Geotechnical Engineering, 2018, 40 (6): 1048- 1055
doi: 10.11779/CJGE201806010
4 CHENG L, SHAHIN M A Urease active bioslurry: a novel soil improvement approach based on microbially induced carbonate precipitation[J]. Canadian Geotechnical Journal, 2016, 53 (9): 1376- 1385
doi: 10.1139/cgj-2015-0635
5 MALEKI M, EBRAHIMI S, ASADZADEH F, et al Performance of microbial-induced carbonate precipitation on wind erosion control of sandy soil[J]. International Journal of Environmental Science and Technology, 2016, 13 (3): 937- 944
doi: 10.1007/s13762-015-0921-z
6 徐晶 基于微生物矿化沉积的混凝土裂缝修复研究进展[J]. 浙江大学学报: 工学版, 2012, 46 (11): 2020- 2027
XU Jing Research process of concrete crack remediation based on microbially mineral precipitation[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (11): 2020- 2027
7 DEJONG J T, SOGA K, KAVAZANJIAN E, et al Biogeochemical processes and geotechnical applications: progress, opportunities and challenges[J]. Geotechnique, 2013, 63 (4): 287- 301
doi: 10.1680/geot.SIP13.P.017
8 VAN PAASSEN L, HARKES M P, VAN ZWIETEN G A, et al. Scale up of BioGrout: a biological ground reinforcement method [C] // 17th International Conference on Soil Mechanics and Geotechnical Engineering. Alexandria, Egypt: IOS, 2009: 2328-2333.
9 GOROSPE C M, HAN S H, KIM S G, et al Effects of different calcium salts on calcium carbonate crystal formation by Sporosarcina pasteurii KCTC 3558[J]. Biotechnology and Bioprocess Engineering, 2013, 18 (5): 903- 908
doi: 10.1007/s12257-013-0030-0
10 KAUR G, DHAMI N K, GOYAL S, et al Utilization of carbon dioxide as an alternative to urea in biocementation[J]. Construction and Building Materials, 2016, 123: 527- 533
doi: 10.1016/j.conbuildmat.2016.07.036
11 CHENG L, CORD-RUWISCH R Selective enrichment and production of highly urease active bacteria by non-sterile (open) chemostat culture[J]. Journal of Industrial Microbiology and Biotechnology, 2013, 40 (10): 1095- 1104
doi: 10.1007/s10295-013-1310-6
12 KERIS-SEN U D, SEN U, SOYDEMIR G, et al An investigation of ultrasound effect on microalgal cell integrity and lipid extraction efficiency[J]. Bioresource Technology, 2014, 152 (1): 407- 413
13 ZHOU Q, ZHANG P Y, ZHANG G M Enhancement of cell production in photosynthetic bacteria wastewater treatment by low-strength ultrasound[J]. Bioresource Technology, 2014, 161: 451- 454
doi: 10.1016/j.biortech.2014.03.106
14 DAI C, WANG B, DUAN C, et al Low ultrasonic stimulates fermentation of riboflavin producing strain Ecemothecium ashbyii[J]. Colloids and Surfaces B: Biointerfaces, 2003, 30 (1): 37- 41
15 高大维, 雷德柱, 高文宏, 等 多波形超声波辐照对啤酒酵母细胞生长的影响[J]. 华南理工大学学报: 自然科学版, 2000, 28 (7): 36- 39
GAO Da-wei, LEI De-zhu, GAO Wen-hong, et al Effects of multi-waveform ultrasound irradiation on the growth of Saccharomyces Cerevisiae [J]. Journal of South China University of Technology: Natural Science Edition, 2000, 28 (7): 36- 39
16 LIU W S, YANG C Y, FANG T J Strategic ultrasound-induced stress response of lactic acid bacteria on enhancement of beta-glucosidase activity for bioconversion of isoflavones in soymilk[J]. Journal of Microbiological Methods, 2018, 148: 145- 150
doi: 10.1016/j.mimet.2018.04.006
17 YAN Y X, DING J Y, GAO J L Improvement of activated sludge bacteria growth by low intensity ultrasound[J]. IOP Conference Series: Earth and Environmental Science, Beijing, China: IOP Publishing, 2016, 39 (1): 012006
18 CHISTI Y Sonobioreactors: using ultrasound for enhanced microbial productivity[J]. Trends in Biotechnology, 2003, 21 (2): 89- 93
doi: 10.1016/S0167-7799(02)00033-1
19 DEJONG J T, MORTENSEN B M, MARTINEZ B C, et al Bio-mediated soil improvement[J]. Ecological Engineering, 2010, 36 (2): 197- 210
doi: 10.1016/j.ecoleng.2008.12.029
20 ZHAO Q, LI L, LI C, et al Factors affecting improvement of engineering properties of micp-treated soil catalyzed by bacteria and urease[J]. Journal of Materials in Civil Engineering, 2014, 26 (12): 04014094
doi: 10.1061/(ASCE)MT.1943-5533.0001013
21 WHIFFIN V S. Microbial CaCO precipitation for the production of biocement [D]. Perth, Australia: Murdoch University, 2004.
22 RASOL R M, NOOR N M, YAHAYA N, et al Combination effects of ultrasound wave and biocide treatment on the growth of sulfate reducing bacteria (SRB)[J]. Desalination and Water Treatment, 2014, 52 (19-21): 3637- 3646
doi: 10.1080/19443994.2013.855005
23 彭劼, 何想, 刘志明, 等 低温条件下微生物诱导碳酸钙沉积加固土体的试验研究[J]. 岩土工程学报, 2016, 38 (10): 1769- 1774
PENG Jie, HE Xiang, LIU Zhi-ming, et al Experimental research on influence of low temperature on MICP-treated soil[J]. Chinese Journal of Geotechnical Engineering, 2016, 38 (10): 1769- 1774
doi: 10.11779/CJGE201610004
24 闫怡新, 刘红 低强度超声波强化污水生物处理机制[J]. 环境科学, 2006, 27 (4): 647- 650
YAN Yi-xin, LIU Hong Mechanism of low intensity ultrasound enhanced biological treatment of wastewater[J]. Environmental Science, 2006, 27 (4): 647- 650
doi: 10.3321/j.issn:0250-3301.2006.04.008
25 DOULAH M S Mechanism of disintegration of biological cells in ultrasonic cavitation[J]. Biotechnology and Bioengineering, 1977, 19 (5): 649- 660
doi: 10.1002/bit.260190504
[1] 谢约翰,唐朝生,刘博,程青,尹黎阳,蒋宁俊,施斌. 基于微生物诱导碳酸钙沉积技术的黏性土水稳性改良[J]. 浙江大学学报(工学版), 2019, 53(8): 1438-1447.
[2] 郑帅,谭大鹏,李霖,朱吟龙. 微反应器计算流体力学与离散元建模及调控[J]. 浙江大学学报(工学版), 2019, 53(7): 1237-1251.
[3] 王剑,胡锡幸,郭吉丰. 二自由度超声波电机位姿检测与控制[J]. 浙江大学学报(工学版), 2014, 48(5): 871-876.
[4] 白洋, 王剑, 王班, 郭吉丰. 新型旋转-直线超声波电机的机理与特性[J]. J4, 2013, 47(10): 1852-1856.
[5] 王光庆, 陆跃明, 郭吉丰. 超声波电动机定子振动能量回收转换特性[J]. J4, 2013, 47(1): 174-181.
[6] 金余其, 褚晓亮, 郑晓园, 池涌, 严建华. 超声波辅助萃取油泥回收原油的试验研究[J]. J4, 2012, 46(12): 2178-2183.
[7] 朴云,董利达,丁力. 能够克服局部NLOS影响的自主移动节点定位方法[J]. J4, 2011, 45(7): 1147-1153.
[8] 王文浩, 郭吉丰, 胡锡幸. 高速高效率的行波型锥面超声波电机[J]. J4, 2011, 45(4): 754-758.
[9] 王波, 郭吉丰. 基于低通滤波的新型超声波电机控制系统[J]. J4, 2011, 45(1): 157-162.
[10] 王光庆. 微型超声波电机定子振动特性有限元分析[J]. J4, 2009, 43(7): 1273-1278.
[11] 程军 周俊虎 李艳昌 刘建忠 岑可法. 超声辐照对水煤浆流阻和制浆性能的影响规律[J]. J4, 2008, 42(6): 998-1004.
[12] 傅平 郭吉丰 沈润杰. 三自由度行波型超声波电机的静力学分析[J]. J4, 2007, 41(6): 968-972.
[13] 王光庆 沈润杰 郭吉丰. 预压力对超声波电机特性的影响研究[J]. J4, 2007, 41(3): 436-440.
[14] 魏燕定 董春兵 郭吉丰. 复合型USM压电扭振子设计及其特性分析[J]. J4, 2004, 38(2): 226-230.
[15] 赵德明 史惠祥 雷乐成 汪大翬. US/H2O2组合工艺催化降解苯酚水溶液的研究[J]. J4, 2004, 38(2): 240-243.