Please wait a minute...
浙江大学学报(工学版)
土木工程、交通工程     
电液复合制动系统防抱控制的舒适性
潘宁, 于良耀, 张雷, 宋健, 张永辉
清华大学 汽车安全与节能国家重点实验室,北京 100084
Anti-lock braking control in coordinated braking system considering braking comfort
PAN Ning, YU Liang yao, ZHANG Lei, SONG Jian, ZHANG Yong hui
State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
 全文: PDF(1782 KB)   HTML
摘要:

针对分布式电动汽车电液复合制动系统,提出考虑舒适性的防抱控制策略.该策略使用滑模控制方法,根据车辆状态参数与轮速计算用于滑移率控制的总扭矩,将该扭矩分配给液压制动与电机.由液压制动提供基础制动力,通过调节电机产生的回馈制动力来调节车轮的滑移率以实现防抱控制.由于减少了液压制动的增减压调节次数,增减压阀的动作频率和制动踏板行程的变化减少,提高了制动舒适性.高附、低附及分离路面仿真结果表明,与传统的逻辑门限ABS控制策略相比,在保证ABS安全性的前提下,采用该电液复合制动防抱控制策略可以有效地改善防抱过程的舒适性.

Abstract:

An anti-lock braking strategy was proposed based on coordinated braking system of distributed driven electric vehicle. The sliding model control was adopted to calculate the total torque to achieve an idea slip using vehicle states parameters and the wheel speeds. Then the total torque was assigned to the hydraulic braking and the regenerative braking. Hydraulic braking provided basic braking while regenerative braking generated by motor modulated the wheel slip ratio in this strategy, realizing the anti-lock braking control. The decrease of hydraulic pressure modulation resulted in the decrease of solenoid valves actuation and the brake pedal stroke variation, which improved the braking comfort. Simulations were conducted on high, low and spilt adhesion roads to evaluate the effectiveness of the proposed strategy. Results show that the proposed strategy leads to braking comfort improvement on the premise of brake safety, compared with the traditional logic threshold ABS strategy.

出版日期: 2017-01-01
CLC:  U 463  
基金资助:

国家“863”高技术研究发展计划资助项目2012AA110903);国家“十二五”科技支撑计划资助项目(2015BAG17B05).

通讯作者: 于良耀,男,副研究员. ORCID: 0000-0002-0083-7236.     E-mail: yly@tsinghua.edu.cn
作者简介: 潘宁(1989—),女,博士生,从事线控制动的研究. ORCID: 0000-0002-7910-3226. E-mail: pann06@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

潘宁, 于良耀, 张雷, 宋健, 张永辉. 电液复合制动系统防抱控制的舒适性[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2017.01.002.

PAN Ning, YU Liang yao, ZHANG Lei, SONG Jian, ZHANG Yong hui. Anti-lock braking control in coordinated braking system considering braking comfort. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2017.01.002.

[1] WILL A B, ZAK S H. Antilock brake system modelling and fuzzy control [J]. International Journal of Vehicle Design, 2000, 24(1): 1-18.
[2] CHOI S B. Antilock brake system with a continuous wheel slip control to maximize the braking performance and the ride quality [J]. IEEE Transactions on Control Systems Technology, 2008, 16(5): 996-1003.
[3] ZHAN W. Noise and vibration modeling for antilock brake systems [M]∥Advances in Computational Algorithms and Data Analysis. Netherlands: Springer, 2009: 481493.
[4] JOHNSSON R, AGREN A, TINGVALL B. NVH caused by ABS and ESP in cold climates [R]. Sweden: Lule Tekniska Universitet, 2009.
[5] CHOI S, LEE J, HWANG I. New generation ABSusing linear flow control and motor speed control [C]∥ SAE 2003 World Congress and Exhibition. Detroit: SAE, 2003: 2003010254.
[6] 李贺.纯电动汽车的再生制动系统与ABS集成控制策略研究[D].武汉:武汉理工大学, 2012.
LI He. A study on regenerative braking system of pure electric vehicle integrated control strategy with ABS [D]. Wuhan: Wuhan University of Technology, 2012.
[7] 张晓慧.液压混合动力车辆再生制动与ABS协调控[D].哈尔滨:哈尔滨工业大学,2011.
ZHANG Xiaohui. Research on integrative control ofregenerative braking and Antilock braking for hydraulic hybrid vehicle [D]. Harbin: Harbin Institute of Technology, 2011.
[8] PENG D, ZHANG Y, YIN C L, et al. Combined control of a regenerative braking and antilock braking system for hybrid electric vehicles [J]. International Journal of Automotive Technology, 2008, 9(6): 749-757.
[9] 程斌.纯电动汽车再生制动与ABS匹配控制研究[D].合肥:合肥工业大学, 2014.
CHENG Bin. Pure electric vehicle matching control strategy of regenerative braking system and ABS [D]. Hefei: Hefei University of Technology, 2014.
[10] LV C, ZHANG J, LI Y, et al. Novel control algorithm of braking energy regeneration system for an electric vehicle during safetycritical driving maneuvers [J]. Energy Conversion and Management, 2015, 106:520-529.
[11] 陈庆樟,何仁,商高高.基于ABS的汽车能量再生制动集成控制研究[J].汽车工程,2008, 30(04): 301-304.
CHEN Qingzhang, HE Ren, SHANG Gaogao. Aresearch on integrated control of vehicle regenerative braking based on ABS [J]. Automotive Engineering, 2008, 30(04): 301-304.
[12] 陈庆樟,何仁,赵连生.汽车能量再生制动防抱死集成控制方法研究[J].中国机械工程,2009(02): 245248.
CHEN Qingzhang, HE Ren, ZHAO Liansheng. Research on vehicle antilock regenerative braking integrated control method [J]. China Mechanical Engineering, 2009(02): 245-248.
[13] 张露,王国业,张延立,等.电动汽车再生摩擦集成制动系统ABS控制性能研究[J].农业机械学报,2015,46(10): 350-356.
ZHANG Lu, WANG Guoye, ZHANG Yanli, et al. ABS control performance of integrated brake system with regenerative friction brake in electric vehicle [J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(10): 350-356.
[14] 张雷.分布式驱动电动汽车制动系统关键技术研究[D].北京:清华大学, 2015.
ZHANG Lei. Research on the key technologies of braking system of distributed driven electric vehicle [D]. Beijing: Tsinghua University, 2015.
[15] ZHANG L, YU L, PAN N, et al. Cooperative control of regenerative braking and friction braking in the transient process of anti-lock braking activation in electric vehicles [J]. Proceedings of the Institution of Mechanical Engineers Part D: Journal of Automobile Engineering, 2016, 230(11): 1459-1476.

[1] 张孝良,耿灿,聂佳梅,高乔. 液力忆惯容器装置建模与特性试验[J]. 浙江大学学报(工学版), 2021, 55(3): 430-440.
[2] 施德华,蔡英凤,汪少华,陈龙,朱镇,高立新. 系统效率最优的功率分流式混合动力汽车非线性预测控制[J]. 浙江大学学报(工学版), 2019, 53(12): 2271-2279.
[3] 杨辰龙,吴鹏辉,商晓波,王赵帅. 含沟槽湿式离合器接合特性数值与试验研究[J]. 浙江大学学报(工学版), 2019, 53(7): 1225-1236.
[4] 符升平,李胜波,罗宁,Roman Nikolaevich Polyakov. 换挡工况下湿式换挡离合器变胞机理[J]. 浙江大学学报(工学版), 2019, 53(4): 628-637.
[5] 付宏勋, 赵又群, 林棻, 杜现斌, 倪新伟. 机械弹性车轮稳态侧偏特性的理论与试验分析[J]. 浙江大学学报(工学版), 2017, 51(2): 344-349.
[6] 葛正, 王维锐, 王俊鼎. 电子机械制动器间隙调整控制策略研究[J]. 浙江大学学报(工学版), 2017, 51(1): 138-144.
[7] 王静, 蔡忆昔, 包伟伟, 李慧霞. 离子风强化大功率LED散热的实验研究[J]. 浙江大学学报(工学版), 2016, 50(10): 1952-1958.
[8] 夏玉峰, 任莉, 叶彩红, 王力. 基于RSM的立柱加强板定位布局多目标优化[J]. 浙江大学学报(工学版), 2016, 50(8): 1600-1607.
[9] 程准,鲁植雄,龚佳慧,刁秀永 . 转向系统传递函数的研究及理想传动比获取[J]. 浙江大学学报(工学版), 2016, 50(7): 1276-1283.
[10] 裴晓朋,王国林,周海超,赵璠. 胎面结构设计参数对轮胎振动噪声的影响[J]. 浙江大学学报(工学版), 2016, 50(5): 871-878.
[11] 马浩军,朱绍鹏,俞小莉,许印川,林鼎. 考虑侧倾运动的电动汽车电子差速控制[J]. 浙江大学学报(工学版), 2016, 50(3): 566-573.
[12] 柯俊,史文库,钱琛,李国民,袁可. 复合材料板簧刚度的预测及匹配设计方法[J]. 浙江大学学报(工学版), 2015, 49(11): 2103-2110.
[13] 邱斌斌, 朱绍鹏, 马浩军, 方光明, 应振有, 宁晓斌. 电动车辆驱动控制系统仿真测试平台设计[J]. 浙江大学学报(工学版), 2015, 49(6): 1154-1159.
[14] 邱斌斌,朱绍鹏,马浩军,方光明,应振有,宁晓斌. 电动车辆驱动控制系统仿真测试平台设计[J]. 浙江大学学报(工学版), 2015, 49(2): 4-5.
[15] 唐昉,周晓军,魏燕定. 改善人-车综合性能的变传动比反馈方法[J]. J4, 2014, 48(3): 456-462.