Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (12): 2271-2279    DOI: 10.3785/j.issn.1008-973X.2019.12.003
机械与能源工程     
系统效率最优的功率分流式混合动力汽车非线性预测控制
施德华1,2(),蔡英凤1,2,*(),汪少华2,陈龙1,2,朱镇1,2,高立新3
1. 江苏大学 汽车工程研究院,江苏 镇江 212013
2. 江苏大学 汽车与交通工程学院,江苏 镇江 212013
3. 奇瑞新能源汽车技术有限公司,安徽 芜湖 241003
Nonlinear predictive control of power split hybrid electric vehicle with optimal system efficiency
De-hua SHI1,2(),Ying-feng CAI1,2,*(),Shao-hua WANG2,Long CHEN1,2,Zhen ZHU1,2,Li-xin GAO3
1. Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China
2. School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China
3. Chery New Energy Co. Ltd, Wuhu 241003, China
 全文: PDF(1314 KB)   HTML
摘要:

针对一种基于双行星排构型的功率分流式混合动力汽车,建立系统动态模型,准确描述其转速转矩耦合关系,通过建立各部件的效率模型,分析不同模式下系统的工作效率. 设计控制器结构框架,以系统工作效率和电池充放电平衡为目标,构建基于模型预测控制的优化问题,采用一步马尔科夫链模型预测驾驶员需求转矩及车速,将有限时域内的优化问题转化为非线性规划问题,基于序列二次规划算法实现优化求解. 仿真研究表明,基于系统效率最优的预测控制器能够维持电池的充放电平衡,在美国城市驾驶循环(UDDS)下,当电池初始电池荷电状态(SOC)分别为0.50、0.55和0.60时,相较于以发动机燃油消耗最优为目标,车辆等效燃油经济性分别提高了7.17%、5.73%和10.11%,验证了控制器的有效性和优越性.

关键词: 混合动力系统功率分流系统效率最优预测控制非线性规划    
Abstract:

A dynamical model of the power split powertrain was established to accurately describe the torque and speed coupling relations within the system, aiming at a novel power split hybrid electric vehicle (HEV) with dual planetary gear sets. By means of building the efficiency model of different components, the system operation efficiency under different modes was analyzed. Then, the control framework of the proposed vehicle was designed, and the optimal control problem based on model predictive control scheme was constructed. The one-step Markov chain model was applied to predict the required driver torque and vehicle velocity. The optimal problem in the prediction horizon was converted to nonlinear programming problem, and sequential quadratic programming (SQP) was applied to derive the optimal control sequence. Simulation results demonstrate that the proposed strategy can maintain the battery charging sustainability. When the initial battery state of charge (SOC) is 0.50, 0.55 and 0.60, respectively, compared with the nonlinear predictive control with the engine fuel consumption as objective, the vehicle equivalent fuel economy is improved by 7.17%、5.73% and 10.11%, respectively, with the proposed strategy under urban dynamometer driving schedule (UDDS). Thus, the feasibility and superiority of the controller are validated.

Key words: hybrid electric system    power split    optimal system efficiency    predictive control    nonlinear programming
收稿日期: 2019-01-07 出版日期: 2019-12-17
CLC:  U 463.2  
基金资助: 国家自然科学基金联合基金资助项目(U1764257);国家自然科学基金资助项目(51475213);江苏省交通运输与安全保障重点建设实验室开放课题(TTS2018-01)
通讯作者: 蔡英凤     E-mail: dhshi@ujs.edu.cn;caicaixiao0304@126.com
作者简介: 施德华(1989—),男,讲师,从事混合动力汽车优化控制策略研究. orcid.org/0000-0002-6865-5594. E-mail: dhshi@ujs.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
施德华
蔡英凤
汪少华
陈龙
朱镇
高立新

引用本文:

施德华,蔡英凤,汪少华,陈龙,朱镇,高立新. 系统效率最优的功率分流式混合动力汽车非线性预测控制[J]. 浙江大学学报(工学版), 2019, 53(12): 2271-2279.

De-hua SHI,Ying-feng CAI,Shao-hua WANG,Long CHEN,Zhen ZHU,Li-xin GAO. Nonlinear predictive control of power split hybrid electric vehicle with optimal system efficiency. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2271-2279.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.12.003        http://www.zjujournals.com/eng/CN/Y2019/V53/I12/2271

图 1  功率分流式混合动力构型
参数 含义 数值 单位
mv 整车整备质量 1 398 kg
Rw 车轮半径 0.287 m
ρair 空气密度 1.23 g/m3
Cd 空气阻力系数 0.3 ?
Af 车辆迎风面积 1.746 m2
id 主减速比 3.93 ?
K1 前行星排特征参数 2.11 ?
K2 后行星排特征参数 2.11 ?
$\omega^{\rm{E}}_{\rm{max}} $ 发动机最大转速 4 700 r/min
$P^{\rm{E}}_{\rm{max}} $ 发动机峰值功率 54 kW
$\omega^{\rm{G}}_{\rm{max}} $ 电机MG1最大转速 8 000 r/min
$P^{\rm{G}}_{\rm{max}} $ 电机MG1峰值功率 15 kW
$\omega^{\rm{M}}_{\rm{max}} $ 电机MG2最大转速 15 000 r/min
$P^{\rm{M}}_{\rm{max}} $ 电机MG2峰值功率 30 kW
表 1  混合动力汽车参数
图 2  动力耦合机构杠杆模型
图 3  当电池温度为25 °C时电池的工作效率
图 4  系统效率最优的预测控制器结构原理
图 5  美国城市驾驶循环(UDDS)工况
图 6  UDDS工况下驾驶员需求转移概率
图 7  不同控制策略下的电池荷电状态变化情况
图 8  不同控制策略下发动机和电机输出功率
图 9  不同控制策略下发动机工作点分布
socini 控制策略 socfin mf / L mequ / L λimp/%
0.50 油耗最优 0.545 3.00 3.21 7.17
效率最优 0.556 3.23 2.98
0.55 油耗最优 0.550 2.79 2.79 5.73
效率最优 0.557 2.92 2.63
0.60 油耗最优 0.545 2.46 2.67 10.11
效率最优 0.556 2.70 2.40
表 2  UDDS工况下不同初始SOC值时车辆经济性
1 ENANG W P, BANNISTER C Modelling and control of hybrid electric vehicles (a comprehensive review)[J]. Renewable and Sustainable Energy Reviews, 2017, 74: 1210- 1239
doi: 10.1016/j.rser.2017.01.075
2 WANG F, ZHANG J, XU X, et al New method for power allocation of multi-power sources considering speed-up transient vibration of planetary power-split HEVs driveline system[J]. Mechanical Systems and Signal Processing, 2019, 128: 1- 18
doi: 10.1016/j.ymssp.2019.03.027
3 SHI D H, PISU P, CHEN L, et al Control design and fuel economy investigation of power split HEV with energy regeneration of suspension[J]. Applied Energy, 2016, 182: 576- 589
doi: 10.1016/j.apenergy.2016.08.034
4 江冬冬, 李道飞, 俞小莉 双轴驱动混合动力车辆能量管理策略[J]. 浙江大学学报: 工学版, 2016, 50 (12): 2245- 2253
JIANG Dong-dong, LI Dao-fei, YU Xiao-li Energy management strategy of dual drive hybrid electric vehicle[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (12): 2245- 2253
5 YANG Y, PEI H, HU X S, et al Fuel economy optimization of power split hybrid vehicles: A rapid dynamic programming approach[J]. Energy, 2019, 166: 929- 938
doi: 10.1016/j.energy.2018.10.149
6 XIA C Y, ZHANG C Real-time optimization power-split strategy for hybrid electric vehicles[J]. Science China Technological Sciences, 2016, 59 (5): 814- 824
doi: 10.1007/s11431-015-5998-6
7 HUANG Y, WANG H, KHAJEPOUR A, et al Model predictive control power management strategies for HEVs: a review[J]. Journal of Power Sources, 2017, 341: 91- 106
doi: 10.1016/j.jpowsour.2016.11.106
8 KIM N, CHA S, PENG H Optimal control of hybrid electric vehicles based on Pontryagin's minimum principle[J]. IEEE Transactions on Control Systems Technology, 2011, 19 (5): 1279- 1287
doi: 10.1109/TCST.2010.2061232
9 SHABBIR W, EVANGELOU S A Real-time control strategy to maximize hybrid electric vehicle powertrain efficiency[J]. Applied Energy, 2014, 135 (C): 512- 522
10 SEZER V, GOKASAN M, BOGOSYAN S A novel ECMS and combined cost map approach for high-efficiency series hybrid electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2011, 60 (8): 3557- 3570
doi: 10.1109/TVT.2011.2166981
11 秦大同, 林毓培, 刘星源, 等 基于系统效率的PHEV动力与控制参数优化[J]. 湖南大学学报: 自然科学版, 2018, 45 (2): 62- 68
QIN Da-tong, LIN Yu-pei, LIU Xing-yuan, et al Optimization of power and control parameters for PHEV based on system efficiency[J]. Journal of Hunan University: Natural Sciences, 2018, 45 (2): 62- 68
12 连静, 韩虎, 李琳辉, 等 基于传动系统效率最优的混合动力汽车控制策略研究[J]. 大连理工大学学报, 2013, 53 (5): 666- 670
LIAN Jing, HAN Hu, LI Lin-hui, et al Research on HEV control strategy based on optimal efficiency of drive syste,[J]. Journal of Dalian University of Technology, 2013, 53 (5): 666- 670
doi: 10.7511/dllgxb201305008
13 林歆悠, 吴超宇, 林海波 基于遗传算法系统效率优化的PHEV电量保持模式控制策略[J]. 中国公路学报, 2018, 31 (5): 174- 182
LIN Xin-you, WU Chao-yu, LIN Hai-bo Control strayegy of PHEV charg-sustaining mode based on GA system efficiency optimization[J]. China Journal of Highway and Transport, 2018, 31 (5): 174- 182
doi: 10.3969/j.issn.1001-7372.2018.05.021
14 汪少华, 李佳芯, 施德华, 等 基于传动效率最优的功率分流式混合动力汽车控制[J]. 江苏大学学报: 自然科学版, 2018, 39 (6): 621- 627
WANG Shao-hua, LI Jia-xin, SHI De-hua, et al Control strategy of power split HEV based on optimal transmission efficiency[J]. Journal of Jiangsu University: Natural Science Editions, 2018, 39 (6): 621- 627
15 王庆年, 王文, 王鹏宇, 等 基于瞬时效率的功率分流式混合动力汽车最佳分离因子的确定[J]. 吉林大学学报: 工学版, 2013, 43 (5): 1160- 1164
WANG Qing-nian, WANG Wen, WANG Peng-yu, et al Determination of the best seperation factor for power-split hybrid electric vehicle based on instantaneous efficiency[J]. Journal of Jilin University: Engineering and Technology Edition, 2013, 43 (5): 1160- 1164
16 郭金刚, 董昊轩, 盛伟辉, 等 电动汽车再生制动能量回收最优控制策略[J]. 江苏大学学报: 自然科学版, 2018, 39 (2): 132- 138
GUO Jin-gang, DONG Hao-xuan, SHENG Wei-hui, et al Optimum control strategy of regenerative braking energy for electric vehicle[J]. Journal of Jiangsu University: Natural Science Editions, 2018, 39 (2): 132- 138
17 SHI D H, WANG S H, PISU P, et al Modeling and optimal energy management of a power split hybrid electric vehicle[J]. Science China Technological Sciences, 2017, 60 (5): 713- 725
doi: 10.1007/s11431-016-0452-8
18 SUN C, HU X S, MOURA S J, et al Velocity predictors for predictive energy management in hybrid electric vehicles[J]. IEEE Transactions on Control Systems Technology, 2015, 23 (3): 1197- 1204
doi: 10.1109/TCST.2014.2359176
19 石丽建, 汤方平, 谢荣盛, 等 轮毂比对轴流式叶轮水力性能的影响[J]. 排灌机械工程学报, 2016, 34 (12): 1045- 1050
SHI Li-jian, TANG Fang-ping, XIE Rong-sheng, et al Effects of hub/tip ratio on hydraulic performance of axial-flow pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34 (12): 1045- 1050
doi: 10.3969/j.issn.1674-8530.16.0011
[1] 江冬冬,李道飞,俞小莉. 基于驾驶员需求转矩预测的模型预测控制能量管理[J]. 浙江大学学报(工学版), 2020, 54(7): 1325-1334.
[2] 赵一佳,王允建,王要东,张伟. 单移相输入串联输出并联的功率预测控制[J]. 浙江大学学报(工学版), 2020, 54(1): 160-168.
[3] 曾小华,董兵兵,李广含,宋大凤. 混合动力系统节油影响因素[J]. 浙江大学学报(工学版), 2019, 53(4): 645-653.
[4] 丁加涛,何杰,李林芷,肖晓晖. 基于模型预测控制的仿人机器人实时步态优化[J]. 浙江大学学报(工学版), 2019, 53(10): 1843-1851.
[5] 郑鹏远, 王针针, 相振东, 冯冬涵. 线性参数时变可测系统的混合反馈预测控制[J]. 浙江大学学报(工学版), 2018, 52(4): 703-709.
[6] 杨庆芳, 赵小辉, 郑黎黎, 张伟. 基于模型预测控制的环形交叉口信号配时方法[J]. 浙江大学学报(工学版), 2018, 52(1): 117-124.
[7] 初亮, 李天骄, 孙成伟. 面向再生制动优化的电动车自适应巡航控制策略[J]. 浙江大学学报(工学版), 2017, 51(8): 1596-1602.
[8] 李国飞, 滕青芳, 王传鲁, 张雅琴. 应用滑模控制的四开关逆变器PMSM系统FCS-MPC策略[J]. 浙江大学学报(工学版), 2017, 51(3): 620-627.
[9] 张明晖,杨家强,陈磊,楼佳羽. 基于扩张状态观测器的永磁电机电流预测控制[J]. 浙江大学学报(工学版), 2016, 50(7): 1387-1392.
[10] 王玄, 陶建峰, 张峰榕, 吴亚瑾, 刘成良. 泵控非对称液压缸系统高精度位置控制方法[J]. 浙江大学学报(工学版), 2016, 50(4): 597-602.
[11] 金鑫, 梁军. 基于动态PLS框架的多变量无静差预测控制[J]. 浙江大学学报(工学版), 2016, 50(4): 750-758.
[12] 张达敏,王仕韬,林辉品,吕征宇. 变拓扑N脉波相控整流器的电流预测控制方法[J]. 浙江大学学报(工学版), 2014, 48(7): 1304-1311.
[13] 孙跃, 赵志斌, 苏玉刚, 唐春森. 非接触电能传输系统参数非线性规划[J]. J4, 2013, 47(2): 353-360.
[14] 李丽娟, 熊路, 刘君, 徐欧官. 基于AP-LSSVM的多模型预测控制[J]. J4, 2013, 47(10): 1741-1746.
[15] 李奇安, 金鑫. 对角CARIMA模型多变量广义预测近似解耦控制[J]. J4, 2013, 47(10): 1764-1769.