Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (12): 2280-2288    DOI: 10.3785/j.issn.1008-973X.2019.12.004
机械与能源工程     
敞开式TBM护盾半径适应性设计
田彦朝(),贺飞,张啸
中铁工程装备集团有限公司,河南 郑州, 450016
Adaptive design of shield radius for open type hard rock TBM
Yan-chao TIAN(),Fei HE,Xiao ZHANG
China Railway Engineering Equipment Group Co. Ltd, Zhengzhou 450016, China
 全文: PDF(1345 KB)   HTML
摘要:

为了研究敞开式岩石隧道掘进机(TBM)护盾半径与开挖洞径的适应性问题,建立护盾与洞壁接触理论模型;基于护盾与洞壁接触间隙的变化规律,结合有限元力学性能分析和实际工况,提出护盾半径的设计方法. 结果表明:底侧护盾最下部应与最小洞壁保持5~10 mm的间隙,在水平位置附近与洞壁相切接触,护盾半径由开挖洞径上、下限共同决定;顶护盾的设计半径应比隧洞开挖半径小30~50 mm,其和洞壁的最大间隙与两者的半径差呈正相关关系,受开挖洞径大小影响微小;底护盾半径设计应保证护盾底部与最小开挖洞壁底部接触,护盾半径应比隧洞开挖半径小15~50 mm.

关键词: 岩石隧道掘进机(TBM)护盾隧洞半径半径设计    
Abstract:

The contact model of shield and tunnel was established in order to analyze the adaptive design of shield radius with tunnel radius for open type hard rock tunnel boring machine (TBM). The shield radius design method was proposed based on the change law of the gap between shield and tunnel, considering finite element analysis of mechanical properties and actual working conditions. Results show that the gap between shield and minimum tunnel at the bottom should be 5 to10 mm. At the horizontal location, the shield should be tangent to the tunnel. The radius of shield is decided by both the minimum and the maximum tunnel radius. The radius of roof shied should be 30 to 50 mm smaller than the designed tunnel radius. The maximum gap between shied and tunnel is positively correlated with the radius difference between them, which is affected by tunnel radius. The bottom shied should be contact with the minimum tunnel radius in the bottom, and the bottom shied radius should be 15 to 50 mm smaller than the designed tunnel radius.

Key words: hard rock tunnel boring machine (TBM)    shield    tunnel radius    radius design
收稿日期: 2018-10-22 出版日期: 2019-12-17
CLC:  U 455.3  
基金资助: 中国铁路总公司科技研究开发计划资助项目(2016G004-A);郑州市重大科技创新专项资助项目(188PCXZX782)
作者简介: 田彦朝(1988—),男,工程师,硕士,从事隧道掘进机设计研发工作. orcid.org/0000-0001-6447-3091. E-mail: 383250021@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
田彦朝
贺飞
张啸

引用本文:

田彦朝,贺飞,张啸. 敞开式TBM护盾半径适应性设计[J]. 浙江大学学报(工学版), 2019, 53(12): 2280-2288.

Yan-chao TIAN,Fei HE,Xiao ZHANG. Adaptive design of shield radius for open type hard rock TBM. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2280-2288.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.12.004        http://www.zjujournals.com/eng/CN/Y2019/V53/I12/2280

图 1  敞开式隧道掘进机(TBM)护盾
图 2  护盾不同伸缩状态示意图
项目 Rn / mm Rf / mm Rfs / mm Rbs / mm Rb / mm
西秦岭 5 115 5 075 5 075 5 075 5 075
高黎贡山 4 515 4 475 4 475 4 475 4 500
吉林引松 3 965 3 865 3 925 3 925 3 950
锦屏 3 615 3 565 3 565 3 565 3 565
表 1  部分工程项目护盾半径数据
图 3  底侧护盾与底护盾的不同安装位置关系
图 4  底侧护盾运动简化模型
图 5  底侧护盾与洞壁的不同接触位置关系
图 6  底侧护盾与洞壁间隙示意图
图 7  底侧护盾与洞壁间隙随位置角度变化曲线
图 8  特定间隙对应的位置角度变化曲线
名称 R / mm R1 / mm sb / mm sh / mm αh / (°)
护盾 a 4 515 4 475 20 0 0
护盾 b 4 515 4 115 20 131 ?45.7
表 2  底侧护盾与洞壁接触模型参数
图 9  底侧护盾与洞壁接触的有限元模型
图 10  不同半径护盾与洞壁作用应力对比云图
图 11  顶护盾与洞壁接触示意图
图 12  护盾与洞壁间隙随护盾半径的变化曲线
图 13  不同洞壁半径下护盾与洞壁间隙对比
1 JIANG Q, SU G S, FENG X T, et al Observation of rock fragment ejection in post-failure response[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 74: 30- 37
doi: 10.1016/j.ijrmms.2014.11.007
2 HUANG X, LIU Q, SHI K, et al Application and prospect of hard rock TBM for deep roadway construction in coal mines[J]. Tunnelling and Underground Space Technology, 2018, 73: 105- 126
doi: 10.1016/j.tust.2017.12.010
3 夏毅敏, 钱聪, 李正光, 等 隧道掘进机支撑推进系统振动特性[J]. 浙江大学学报: 工学版, 2018, 52 (2): 233- 239
XIA Yi-min, QIAN Cong, LI Zheng-guang, et al Vibration characteristics of TBM supporting-thrusting system[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (2): 233- 239
4 HONG E S, LEE I M, SHIN H S, et al Quantitative risk evaluation based on event tree analysis technique: application to the design of shield TBM[J]. Tunnelling and Underground Space Technology, 2009, 24 (3): 269- 277
doi: 10.1016/j.tust.2008.09.004
5 刘统, 龚国芳, 彭左, 等 基于液压变压器的TBM刀盘混合驱动系统[J]. 浙江大学学报: 工学版, 2016, 50 (3): 419- 427
LIU Tong, GONG Guo-fang, PENG Zuo, et al Hybrid cuttehead driving system for TBM based on hydraulic transformer[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (3): 419- 427
6 XIA Y M, LIN L K, WU D, et al Geological adaptability matching design of disc cutter using multicriteria decision making approaches[J]. Journal of Central South University, 2018, 25 (4): 843- 854
doi: 10.1007/s11771-018-3788-6
7 程永亮, 钟掘, 暨智勇, 等 TBM刀盘地质适应性设计方法及其应用[J]. 机械工程学报, 2018, 54 (1): 1- 9
CHENG Yong-liang, ZHONG Jue, JI Zhi-yong, et al Geological adaptive design method and application of TBM cutterhead[J]. Journal of Mechanical Engineering, 2018, 54 (1): 1- 9
8 尚彦军, 史永跃, 曾庆利, 等 昆明上公山隧道复杂地质条件下TBM卡机及护盾变形问题分析和对策[J]. 岩石力学与工程学报, 2005, 24 (1): 3858- 3863
SHANG Yan-jun, SHI Yong-yue, ZENG Qing-li, et al TBM jamming and deformation in complicated geological condition and engineering measures[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24 (1): 3858- 3863
9 YAZDANI-CHAMZINI A, YAKHCHALI S H Tunnel boring machine (TBM) selection using fuzzy multicriteria decision making methods[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2012, 30 (4): 194- 204
10 CHO S H, KIM J, WON J, et al Effects of jack force and construction steps on the change of lining stresses in a TBM tunnel[J]. KSCE Journal of Civil Engineering, 2017, 21 (4): 1- 12
11 夏毅敏, 林赉贶, 贺飞, 等 盘形滚刀刀圈结构地质适应性设计方法[J]. 机械工程学报, 2018, 54 (1): 10- 17
XIA Yi-min, LIN Lai-kuang, HE Fei, et al Geological adaptability design method of disc cutter ring[J]. Journal of Mechanical Engineering, 2018, 54 (1): 10- 17
12 ZHOU H, GAO Y, ZHANG C, et al A 3D model of coupled hydro-mechanical simulation of double shield TBM excavation[J]. Tunnelling and Underground Space Technology, 2018, 71: 1- 14
doi: 10.1016/j.tust.2017.07.012
13 MARINOS V, STOUMPOS G, PAPOULI D, et al Selection of TBM and geotechnical assessment of a microtunnel in a difficult geological environment: a case of a natural gas pipeline beneath an active landslide (Albania)[J]. Bulletin of Engineering Geology and the Environment, 2018, (2014): 1- 19
14 HASANPOUR R, ROSTAMI J, ?Z?ELIK Y Impact of overcut on interaction between shield and ground in the tunneling with a double-shield TBM[J]. Rock Mechanics and Rock Engineering, 2016, 49 (5): 2015- 2022
doi: 10.1007/s00603-015-0823-x
15 程建龙, 杨圣奇, 李学华, 等 位移释放率对双护盾TBM护盾压力的影响研究[J]. 岩土力学, 2016, 37 (5): 1399- 1407
CHENG Jian-long, YANG Sheng-qi, LI Xue-hua, et al Impact of longitudinal displacement profile relaxation on contract force acted on double shield TBM in squeezing ground[J]. Rock and Soil Mechanics, 2016, 37 (5): 1399- 1407
16 刘泉声, 黄兴, 时凯, 等 超千米深部全断面岩石掘进机卡机机理[J]. 煤炭学报, 2013, 38 (1): 78- 84
LIU Quan-sheng, HUAN Xing, SHI Kai, et al Jamming mechanism of full face tunnel boring machine in over thousand-meter depths[J]. Journal of China Coal Society, 2013, 38 (1): 78- 84
17 刘泉声, 彭星新, 黄兴, 等 全断面隧道掘进机护盾受力监测及卡机预警[J]. 岩土力学, 2018, 39 (9): 3406- 3414
LIU Quan-sheng, PENG Xing-xin, HUAN Xing, et al Monitoring shield stress of tunnel boring machine and jamming warning[J]. Rock and Soil Mechanics, 2018, 39 (9): 3406- 3414
[1] 刘统, 龚国芳, 彭左, 吴伟强, 彭雄斌. 基于液压变压器的TBM刀盘混合驱动系统[J]. 浙江大学学报(工学版), 2016, 50(3): 419-427.
[2] 刘统, 龚国芳, 彭左, 吴伟强, 彭雄斌. 基于液压变压器的TBM刀盘混合驱动系统[J]. 浙江大学学报(工学版), 2016, 50(2): 0-.
[3] 王林涛, 龚国芳, 施虎. 基于拼装参数优化的盾构机管片拼装节能技术[J]. J4, 2012, 46(12): 2259-2267.