Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (5): 1007-1017    DOI: 10.3785/j.issn.1008-973X.2025.05.014
机械工程     
电磁混合式耦合器调隙装置多目标参数优化
王爽1,2,3(),孙守锁2,3,郭永存1,2,3,胡泽永2,3
1. 安徽理工大学 煤炭无人化开采数智技术全国重点实验室,安徽 淮南 232001
2. 安徽理工大学 矿山智能技术与装备省部共建协同创新中心,安徽 淮南 232001
3. 安徽理工大学 机电工程学院,安徽 淮南 232001
Multi-objective parameter optimization of gapping device for electromagnetic hybrid coupler
Shuang WANG1,2,3(),Shousuo SUN2,3,Yongcun GUO1,2,3,Zeyong HU2,3
1. State Key Laboratory of Digital and Intelligent Technology for Unmanned Coal Mining, Anhui University of Science and Technology, Huainan 232001, China
2. Collaborative Innovation Center of Mine Intelligent Equipment and Technology, Anhui University of Science and Technology, Huainan 232001, China
3. School of Electrical and Mechanical Engineering, Anhui University of Science and Technology, Huainan 232001, China
 全文: PDF(2654 KB)   HTML
摘要:

针对双盘式磁力耦合器的调隙机构普遍存在的体积大、调节精度低的问题,提出新型的电磁混合式磁力耦合器,通过电磁驱动可以实现磁力耦合器的精准调隙. 以平均推力和推力波动为目标,对核心构件电磁调隙装置进行多目标优化. 基于敏感度分析对设计参数进行分级优化,提出蜣螂优化算法优化BP神经网络模型(DBO-BP)和多目标金豺优化算法(MOGJO),结合响应面法和扫描法,确定电磁调隙装置的最优参数. 基于有限元法对推力波形、感应电动势、磁感应强度及磁场线分布进行分析,优化后径向气隙磁感应强度提升了19%,平均推力提升了57.8%,推力波动比值降低了28.3%,验证了最终设计相对于最初设计的优异性能以及新型磁力耦合器多目标参数分级优化的正确性.

关键词: 磁力耦合器电磁调隙DBO-BP神经网络多目标金豺优化(MOGJO)算法多目标参数优化    
Abstract:

A new electromagnetic hybrid magnetic coupler was proposed aiming at the problems of large volume and low adjustment precision that generally exist in the gapping mechanism of the double-disk magnetic coupler. The precise gapping of the magnetic coupler can be achieved through electromagnetic drive. Multi-objective optimization of the core component electromagnetic gapping device was conducted with average thrust and thrust fluctuation as the objectives. The dung beetle optimization algorithm optimization BP neural network model (DBO-BP) and the multi-objective golden jackal optimization algorithm (MOGJO) were proposed based on the sensitivity analysis for hierarchical optimization of design parameters in order to determine the optimal parameters of the electromagnetic gapping device by combining the response surface method and the scanning method. The thrust waveform, induced electromotive force, magnetic induction and magnetic field line distribution were analyzed based on the finite element method. The optimized radial air-gap magnetic induction was improved by 19%, the average thrust was improved by 57.8%, and the thrust fluctuation ratio was reduced by 28.3%. The excellent performance of the final design with respect to the initial design and the correctness of the multi-objective parameter grading optimization of the new magnetic coupler were verified.

Key words: magnetic coupler    electromagnetically regulated air gap    DBO-BP neural network    multi-objective golden jackal optimization (MOGJO) algorithm    multi-objective parameter optimization
收稿日期: 2024-03-12 出版日期: 2025-04-25
CLC:  TH 133  
基金资助: 安徽省高校杰出青年科研资助项目(2022AH020056);国家自然科学基金资助项目(52274152, 52404160);安徽省自然科学优秀青年科研基金资助项目(2308085Y37).
作者简介: 王爽(1991—),女,副教授,博导,从事高效磁力传动的研究. orcid.org/0000-0002-6452-778X. E-mail:shuangw094@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王爽
孙守锁
郭永存
胡泽永

引用本文:

王爽,孙守锁,郭永存,胡泽永. 电磁混合式耦合器调隙装置多目标参数优化[J]. 浙江大学学报(工学版), 2025, 59(5): 1007-1017.

Shuang WANG,Shousuo SUN,Yongcun GUO,Zeyong HU. Multi-objective parameter optimization of gapping device for electromagnetic hybrid coupler. Journal of ZheJiang University (Engineering Science), 2025, 59(5): 1007-1017.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.05.014        https://www.zjujournals.com/eng/CN/Y2025/V59/I5/1007

图 1  新型电磁混合式磁力耦合器的结构
图 2  调隙装置的结构图
图 3  电磁调隙装置的二维磁场解析模型
图 4  径向气隙的磁感应强度
图 5  轴向气隙的磁感应强度
图 6  电磁调隙装置的初始模型推力
图 7  电磁调隙装置结构参数的示意图
结构参数初始值优化范围
Bc/mm32~4
Bpm/mm4.753.5~5.5
Lpm/mm3.22.5~3.5
g/mm10.5~1.5
hs/mm88~13
bs/mm2.52.0~3.0
hm/mm1.51.0~2.0
Ks0.750.70~0.80
Bs/mm22~6
表 1  待优化结构参数的初始值及变化范围
结构参数平均推力方差推力波动方差
Bc/mm2301.431399.601
Bpm/mm2514.8888172.1289
Lpm/mm265.0598165.95046
g/mm21162.585833.3832
hs/mm20.4992077.820106
bs/mm2128.716224.96842
hm/mm22.83465531.65431
Ks1.0586553.606926
Bs/mm20.90960748.59293
表 2  平均推力方差与推力波动方差
图 8  结构参数的敏感性分析结果
图 9  分级优化的流程图
代理模型平均推力推力波动
RMSERRMSER
BP1.285 40.994 132.291 20.924 24
PSO-BP1.207 60.994 822.143 30.923
DBO-BP1.111 30.994 711.846 70.931
表 3  不同代理模型的拟合效果检验
图 10  第1级Pareto图
Bc/mmBpm/mmg/mmFavg/NFripple/N
A45.50.711 471.221 824.782 1
B3.165 23.50.610 948.447 79.634 0
C2.576 23.50.938 136.122 76.296 7
表 4  第2级优化的初始点
序号组合ABC
Lpm/mmhm/mmbs/mmBs/mmFavg/NFripple/NFavg/NFripple/NFavg/NFripple/N
131.52.5472.3511726.1251746.3657617.6021135.149829.107080
2323.0462.0370915.9084039.2813714.8223629.361099.251430
$\vdots $$\vdots $$\vdots $$\vdots $$\vdots $$\vdots $$\vdots $$\vdots $$\vdots $$\vdots $$\vdots $
28312.5272.7199521.2853547.6557915.4961635.348298.254580
29322.5671.4616524.2671646.5792716.6391934.0681111.20004
表 5  中敏感度参数 Box-Behnken实验设计及结果
图 11  点A、B、C的部分响应面图
图 12  第2级优化的pareto图
Lpm/mmhm/mmbs/mmBs/mmFavg/NFripple/N
a3.449886222?74.04259.860152
b2.995349222?52.269111.59230
c2.8297791.76345122?37.87837.298239
表 6  第3级优化的初始点
图 13  时间对比箱线图
序号结构参数序号结构参数
Kshs/mmKshs/mm
10.708100.7011
20.758110.7511
30.808120.8011
40.709130.7012
50.759140.7512
60.809150.8012
70.7010160.7013
80.7510170.7513
90.8010180.8013
表 7  弱敏感度设计参数扫描表
图 14  弱敏感度参数的扫描结果图
结构参数数值
优化前优化后
Bc/mm34
Bpm/mm4.755.5
Lpm/mm3.23.45
g/mm10.71
hs/mm811
bs/mm2.52
hm/mm1.52
Ks0.750.7
Bs/mm22
Favg/N47.50838074.960875
Fripple/N10.36786011.725269
表 8  参数优化前、后的对比表
图 15  优化后径向气隙磁感应强度
图 16  优化后轴向气隙磁感应强度
图 17  优化前、后的推力波形图
图 18  优化前、后的感应电动势波形图
图 19  磁力线的对比图
图 20  磁感应强度的对比云图
1 杨超君, 袁爱仁, 陈子清, 等 盘式实心异步磁力耦合器的机械特性与调速特性[J]. 电机与控制学报, 2019, 23 (5): 110- 118
YANG Chaojun, YUAN Airen, CHEN Ziqing, et al Mechanical properties and adjustable-speed characteristics of axial-flux-solid-type asynchronous magnetic couplers[J]. Electric Machines and Control, 2019, 23 (5): 110- 118
2 张炳义, 冯永, 冯桂宏, 等 轴向磁通调速磁力耦合器漏磁系数分析计算与试验研究[J]. 电机与控制学报, 2019, 23 (3): 73- 80
ZHANG Bingyi, FENG Yong, FENG Guihong, et al Calculation method of magnetic flux leakage coefficient and experimental study of permanent magnet coupler with axial magnetic flux[J]. Electric Machines and Control, 2019, 23 (3): 73- 80
3 WANG J, ZHU J A simple method for performance prediction of permanent magnet eddy current couplings using a new magnetic equivalent circuit model[J]. IEEE Transactions on Industrial Electronics, 2018, 65 (3): 2487- 2495
doi: 10.1109/TIE.2017.2739704
4 FLORIO F, SINHA G, SUNDARARAMAN R Designing high-accuracy permanent magnets for low-power magnetic resonance imaging[J]. IEEE Transactions on Magnetics, 2018, 54 (5): 1- 9
5 MOHAMMADI S, MIRSALIM M, VAEZ-ZADEH S, et al Analytical modeling and analysis of axial-flux interior permanent-magnet couplers[J]. IEEE Transactions on Industrial Electronics, 2014, 61 (11): 5940- 5947
doi: 10.1109/TIE.2014.2311391
6 ABEROOMAND V, MIRSALIM M, FESHARAKIFARD R Design optimization of double-sided permanent-magnet axial eddy-current couplers for use in dynamic applications[J]. IEEE Transactions on Energy Conversion, 2019, 34 (2): 909- 920
doi: 10.1109/TEC.2018.2880679
7 ARSLAN S, ISKENDER I, NAVRUZ T S Fem-based optimal design and testing of synchronous magnetic coupling for aerospace starter/generator applications[J]. Engineering Science and Technology: an International Journal-Jestech, 2023, 41 (3): 1042- 1060
8 ALSHAMMARI S, LAZARI P, ATALLAH K Comparison of eddy current coupling topologies for high efficiency mechanical power transmission[J]. IEEE Transactions on Energy Conversion, 2023, 38 (2): 982- 992
doi: 10.1109/TEC.2022.3217347
9 葛研军, 周凯凯, 刘艳龙, 等 磁力耦合器调速机构研究[J]. 大连交通大学学报, 2014, 35 (3): 32- 36
GE Yanjun, ZHOU Kaikai, LIU Yanlong, et al Research on the speed regulation mechanism of magnetic coupling[J]. Journal of Dalian Jiaotong University, 2014, 35 (3): 32- 36
doi: 10.3969/j.issn.1673-9590.2014.03.008
10 杨超君, 吉城龙, 张秀文, 等 筒式异步磁力耦合器的转矩与调速关系研究[J]. 电机与控制学报, 2019, 23 (1): 108- 116
YANG Chaojun, JI Chenglong, ZHANG Xiuwen, et al Torque and adjustable-speed relation for drum-type asynchronous magnetic couplers[J]. Electric Machines and Control, 2019, 23 (1): 108- 116
11 杨超君, 朱莉, 吴盈志, 等 开槽型盘式异步磁力耦合器调速特性[J]. 电机与控制学报, 2021, 25 (11): 130- 138
YANG Chaojun, ZHU Li, WU Yingzhi, et al Speed-control characteristics of slotted-type axial-flux asynchronous magnetic couplers[J]. Electric Machines and Control, 2021, 25 (11): 130- 138
12 周凯凯, 史岳鹏, 李骞, 等 永磁式异步磁力耦合器设计及分析[J]. 机械设计与研究, 2022, 38 (3): 184- 188
ZHOU Kaikai, SHI Yuepeng, LI Qian, et al Design and analysis of a permanent magnetic asynchronous coupler[J]. Machine Design and Research, 2022, 38 (3): 184- 188
13 葛研军, 刘述良, 王建帅 锥形转子磁力耦合器调速机理研究[J]. 制造技术与机床, 2022, (5): 77- 83
GE Yanjun, LIU Shuliang, WANG Jianshuai Study on speed-regulation mechanism of cone-rotor magnetic coupler[J]. Manufacturing Technology and Machine Tool, 2022, (5): 77- 83
14 LI Y, LIN H, HUANG H, et al Analysis and performance evaluation of an efficient power-fed permanent magnet adjustable speed drive[J]. IEEE Transactions on Industrial Electronics, 2019, 66 (1): 784- 794
doi: 10.1109/TIE.2018.2832018
15 杨超君, 戚玉堂, 丁逸飞, 等 温度影响下的开槽盘式磁力耦合器调速特性[J]. 电机与控制学报, 2024, 28 (1): 69- 77
YANG Chaojun, QI Yutang, DING Yifei, et al Speed regulation performance of slotted-type axial-flux magnetic couplers under temperature influence[J]. Electric Machines and Control, 2024, 28 (1): 69- 77
16 程苗苗, 翟朋辉, 张英杰, 等 基于自学习非线性PID的音圈电机精密定位系统[J]. 电工技术学报, 2023, 38 (6): 1519- 1530
CHENG Miaomiao, ZHAI Penghui, ZHANG Yingjie, et al A voice coil motor-driven precision positioning system based on self-learning nonlinear PID[J]. Transactions of China Electrotechnical Society, 2023, 38 (6): 1519- 1530
17 陈晓丹, 吴澳, 赵睿杰, 等 磁悬浮无轴离心泵叶轮转子动力学特性[J]. 浙江大学学报: 工学版, 2023, 57 (8): 1680- 1688
CHEN Xiaodan, WU Ao, ZHAO Ruijie, et al Rotor dynamics of impeller in a magnetic suspension bearingless centrifugal pump[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (8): 1680- 1688
18 付东山, 贾泽宇, 吴富强, 等 新型斜气隙圆筒型横向磁通切换直线电机及其建模分析[J]. 中国电机工程学报, 2022, 42 (15): 5706- 5719
FU Dongshan, JIA Zeyu, WU Fuqiang, et al Novel oblique air-gap tubular transverse flux switching permanent magnet linear motors and its modeling analysis[J]. Proceedings of the CSEE, 2022, 42 (15): 5706- 5719
19 王明杰, 李彦彦, 焦留成, 等 永磁游标直线电机磁场解析计算[J]. 电机与控制学报, 2017, 21 (10): 54- 61
WANG Mingjie, LI Yanyan, JIAO Liucheng, et al Analytical magnetic field calculation of linear permanent magnet vernier motor[J]. Electric Machines and Control, 2017, 21 (10): 54- 61
20 曹晓彦, 于敏, 周瑾, 等 可调旋转式流体阻尼器参数多目标优化设计[J]. 浙江大学学报: 工学版, 2023, 57 (7): 1439- 1449
CAO Xiaoyan, YU Min, ZHOU Jin, et al Multi-objective optimization design of adjustable rotary fluid damper parameter[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (7): 1439- 1449
21 李祥林, 李金阳, 杨光勇, 等 电励磁双定子场调制电机的多目标优化设计分析[J]. 电工技术学报, 2020, 35 (5): 972- 982
LI Xianglin, LI Jinyang, YANG Guangyong, et al Multi-objective optimization analysis of electric-excitation double-stator field-modulated machine[J]. Transactions of China Electrotechnical Society, 2020, 35 (5): 972- 982
22 张德胜, 杨港, 赵旭涛, 等 基于BP神经网络的立式离心泵导叶与蜗壳优化设计[J]. 农业机械学报, 2022, 53 (4): 130- 139
ZHANG Desheng, YANG Gang, ZHAO Xutao, et al Optimization design of vane diffuser and volute in vertical centrifugal pump based on back propagation neural network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53 (4): 130- 139
doi: 10.6041/j.issn.1000-1298.2022.04.013
23 XUE J, SHEN B Dung beetle optimizer: a new meta-heuristic algorithm for global optimization[J]. Journal of Supercomputing, 2022, 79 (7): 7305- 7336
24 REN C, AN N, WANG J, et al Optimal parameters selection for BP neural network based on particle swarm optimization: a case study of wind speed forecasting[J]. Knowledge-Based Systems, 2014, 56 (2): 226- 239
25 CHOPRA N, ANSARI M M Golden jackal optimization: a novel nature-inspired optimizer for engineering applications[J]. Expert Systems with Applications, 2022, 198 (4): 323- 336
[1] 黎铭,张进华,李文超,王虹淇,洪军,方斌. 圆柱滚子轴承的局域打滑特性及其影响因素[J]. 浙江大学学报(工学版), 2025, 59(3): 577-587.
[2] 耿志强,陈威,马波,韩永明. 基于连续小波卷积神经网络的轴承智能故障诊断方法[J]. 浙江大学学报(工学版), 2024, 58(10): 2069-2075.
[3] 莫仁鹏,司小胜,李天梅,朱旭. 基于多尺度特征与注意力机制的轴承寿命预测[J]. 浙江大学学报(工学版), 2022, 56(7): 1447-1456.
[4] 吴海同,周瑾,纪历. 基于单相坐标变换的磁悬浮转子不平衡补偿[J]. 浙江大学学报(工学版), 2020, 54(5): 963-971.
[5] 吴正海,徐颖强,刘楷安,赵兴. 圆锥滚子轴承滚子/滚道副的脂润滑热成膜性能[J]. 浙江大学学报(工学版), 2020, 54(3): 459-466.
[6] 赵祥龙,陈捷,洪荣晶,王华,李媛媛. 基于Wavelet leader和优化的等距映射算法的回转支承自适应特征提取[J]. 浙江大学学报(工学版), 2019, 53(11): 2092-2101.
[7] 赵硕丰,黄晓艳,方攸同. 低开关频率选择谐波消除调制的母线波动补偿[J]. 浙江大学学报(工学版), 2019, 53(2): 388-398.
[8] 蒋科坚, 祝长生. 电磁轴承-柔性转子系统多目标加权的主动振动控制[J]. 浙江大学学报(工学版), 2016, 50(10): 1946-1951.
[9] 李特, 芮执元, 雷春丽, 郭俊锋, 胡赤兵. 考虑气隙变化的高速电主轴热特性仿真[J]. 浙江大学学报(工学版), 2016, 50(5): 941-948.
[10] 宁峰平,姚建涛,孙锟,马明臻,赵永生. 多因素耦合对空间轴承热学特性的影响[J]. 浙江大学学报(工学版), 2016, 50(1): 129-136.
[11] 袁幸,朱永生,张优云,洪军,祁文昌. 基于正反问题的滚动轴承损伤程度评估[J]. J4, 2012, 46(11): 1960-1967.
[12] 蒋科坚,祝长生. 主动电磁轴承转子系统自适应不平衡补偿控制[J]. J4, 2011, 45(3): 503-509.
[13] 杨先勇,周晓军,张文斌,杨富春,林勇. 基于形态小波和S变换的滚动轴承故障特征提取[J]. J4, 2010, 44(11): 2088-2092.
[14] 杨先勇, 周晓军, 林勇, 张文斌, 沈路. 基于V-detector算法的滚动轴承故障诊断方法[J]. J4, 2010, 44(9): 1805-1810.
[15] 杨先勇, 周晓军, 张文斌, 杨富春. 基于局域波法和KPCA-LSSVM的滚动轴承故障诊断[J]. J4, 2010, 44(8): 1519-1524.