Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (10): 2078-2085    DOI: 10.3785/j.issn.1008-973X.2025.10.008
交通工程、水利工程、土木工程     
自动驾驶样本库中雪天场景融合构建方法
董兆龙1,2(),黄鹤1,2,*(),李战一1,2,杨澜3,王会峰2
1. 长安大学 电子与控制工程学院,陕西 西安 710064
2. 长安大学 西安市智慧高速公路信息融合与控制重点实验室,陕西 西安 710064
3. 长安大学 信息工程学院,陕西 西安 710064
Snowy scene integration construction method in autonomous driving sample library
Zhaolong DONG1,2(),He HUANG1,2,*(),Zhanyi LI1,2,Lan YANG3,Huifeng WANG2
1. School of Electronics and Control Engineering, Chang’an University, Xi’an 710064, China
2. Key Laboratory of Intelligent Expressway Information Fusion and Control, Chang’an University, Xi’an 710064, China
3. School of Information Engineering, Chang’an University, Xi’an 710064, China
 全文: PDF(5769 KB)   HTML
摘要:

自动驾驶感知性能训练所需的雪天场景样本库数据收集难度大,样本数量较少,为此提出基于感知估计的雪天场景构建算法. 将雪天场景划分为积雪模型和雪线模型,提出基于空间感知的积雪平面构建算法,分析图像细微的梯度变化,估计初步积雪区域. 使用连通域分析方法细化初步积雪区域,将积雪区域与原图融合,获得积雪场景图像. 提出基于随机雪线模型的雪天场景构建算法,生成不同运动方向的雪花. 将积雪模型和雪线模型融合,利用多种基础雪线形态构建雪天场景. 多帧交通视频数据对比实验结果表明,在使用雪天场景融合方法构建的雪天场景中,随着雪量增加,图像的干扰信息和细节都明显增强,主观上接近实际雪天场景;随积雪和雪线密度的增加,加雪图像质量客观评价指标不断降低.

关键词: 自动驾驶雪天场景样本积雪场景雪线模型图像质量    
Abstract:

A snow scene construction algorithm based on perception estimation was proposed to address the problems of difficulty in collecting data from existing snow scene sample libraries and limited sample sizes during the training of autonomous driving perception performance. The snow scene was divided into two models: snow-covered model and snow-line model, and a snow-covered plane construction algorithm based on spatial perception was proposed to analyze the subtle gradient changes in the image and estimate the preliminary snow area. The preliminary snow areas were refined using connected domain analysis, and the areas were fused with the original image to obtain snow-covered scene images. A snow scene construction algorithm based on a random snow-line model was proposed to generate different motion directions for snowflakes. Snow-covered model and snow-line model were integrated, and various basic snow-line forms were utilized to construct snow scenes. Experimental results from the comparison of multi-frame traffic video data show that, in the snowy scenes constructed using the snowy scene fusion method, as the amount of snow increases, both the interference information and the details of the image are significantly enhanced, subjectively approaching the actual snow scene. Moreover, objective evaluation metrics for snow image quality decrease with the increase of snow cover and snow-line density.

Key words: autonomous driving    snowy scene sample    snow-covered scene    snow-line model    image quality
收稿日期: 2024-10-14 出版日期: 2025-10-27
CLC:  TP 393  
基金资助: 国家自然科学基金资助项目(52472446);国家重点研发计划项目(2021YFB2501200);陕西省留学人员科技活动择优资助项目(2023001);中央高校基本科研业务费资助项目(300102325501).
通讯作者: 黄鹤     E-mail: 2023132006@chd.edu.cn;huanghe@chd.edu.cn
作者简介: 董兆龙(2001—),男,硕士生,从事图像处理和信息融合研究. orcid.org/0009-0008-4426-8830. E-mail:2023132006@chd.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
董兆龙
黄鹤
李战一
杨澜
王会峰

引用本文:

董兆龙,黄鹤,李战一,杨澜,王会峰. 自动驾驶样本库中雪天场景融合构建方法[J]. 浙江大学学报(工学版), 2025, 59(10): 2078-2085.

Zhaolong DONG,He HUANG,Zhanyi LI,Lan YANG,Huifeng WANG. Snowy scene integration construction method in autonomous driving sample library. Journal of ZheJiang University (Engineering Science), 2025, 59(10): 2078-2085.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.10.008        https://www.zjujournals.com/eng/CN/Y2025/V59/I10/2078

图 1  晴天场景图像的像素波动情况
图 2  去除天空区域影响前后的图像对比
图 3  积雪区域的图像细化处理及图像融合
图 4  白亮效果产生原理
图 5  雪线滤波示意图
图 6  雪线密度效果图
图 7  基于感知估计的雪天场景构建算法流程图
图 8  交通视频关键帧加雪实验可视化结果
图 9  交通视频关键帧积雪实验可视化结果
图 10  不同雪线密度条件下,2种实验场景的算法性能评价曲线(含4个交通视频关键帧)
δs加雪实验积雪实验
EAGFADEPSNRSSIMFCEAGFADEPSNRSSIMFC
1014.4077.7190.63133.7190.9710.99413.10019.3650.41928.8810.5070.198
2014.4997.6840.65928.5350.9201.01013.13819.1370.42228.5890.4890.201
3014.3887.5780.71625.7140.8721.03712.97518.7450.44028.3250.4710.207
4014.1567.4600.80024.4570.8231.06112.71818.2160.46828.0790.4560.214
5013.8167.2030.89124.2380.7761.11213.41417.6340.49127.7950.4370.221
表 1  不同雪线密度条件下,2种实验场景的算法性能评价结果
图 11  不同雪线密度条件下,2种实验的可视化结果(使用其他数据集图像)
δs加雪实验积雪实验
EAGFADEPSNRSSIMFCEAGFADEPSNRSSIMFC
1012.0642.7641.33933.9340.9640.85010.24115.6390.82227.0920.4010.048
2012.1802.8921.34133.0210.9280.87310.32715.5890.84526.9960.3810.048
3012.2932.9461.35228.7520.9030.88210.26115.0960.87526.6430.3580.049
4012.2913.0971.35425.7530.8520.89012.29114.9250.89826.4320.3530.049
5012.1903.2331.42724.1520.7710.90112.19014.5770.92826.1250.3340.049
表 2  不同雪线密度条件下,2种实验的算法性能评价结果(使用其他数据集图像)
1 KARAVARSAMIS S, GKIKA I, GKITSAS V, et al A survey of deep learning-based image restoration methods for enhancing situational awareness at disaster sites: the cases of rain, snow and haze[J]. Sensors, 2022, 22 (13): 4707- 4751
2 LIU Y F, JAW D W, HUANG S C, et al DesnowNet: context-aware deep network for snow removal[J]. IEEE Transactions on Image Processing, 2018, 27 (6): 3064- 3073
doi: 10.1109/TIP.2018.2806202
3 CHEN W T, FANG H Y, DING J J, et al. JSTASR: joint size and transparency-aware snow removal algorithm based on modified partial convolution and veiling effect removal [C]// Computer Vision – ECCV 2020. [S.l.]: Springer, 2020: 754–770.
4 LI B, REN W, FU D, et al Benchmarking single-image dehazing and beyond[J]. IEEE Transactions on Image Processing, 2019, 28 (1): 492- 505
doi: 10.1109/TIP.2018.2867951
5 CHEN W T, FANG H Y, HSIEH C L, et al. All snow removed: single image desnowing algorithm using hierarchical dual-tree complex wavelet representation and contradict channel loss [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 4176–4185.
6 CHEN H, REN J, GU J, et al. Snow removal in video: a new dataset and a novel method [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 13165–13176.
7 ZHANG K, LI R, YU Y, et al Deep dense multi-scale network for snow removal using semantic and depth priors[J]. IEEE Transactions on Image Processing, 2021, 30: 7419- 7431
doi: 10.1109/TIP.2021.3104166
8 GEIGER A, LENZ P, STILLER C, et al Vision meets robotics: the KITTI dataset[J]. International Journal of Robotics Research, 2013, 32 (11): 1231- 1237
doi: 10.1177/0278364913491297
9 CORDTS M, OMRAN M, RAMOS S, et al. The Cityscapes dataset for semantic urban scene understanding [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 3213–3223.
10 JANOSOVITS J. Cityscapes TL++: semantic traffic light annotations for the Cityscapes dataset [C]// Proceedings of the International Conference on Robotics and Automation. Philadelphia: IEEE, 2022: 2569–2575.
11 HAO J, JIANG M, HUANG Y, et al. Scatter inpainting algorithm for rain or snow removal in a single image [C]// Proceedings of the IEEE 4th International Conference on Computer and Communications. Chengdu: IEEE, 2018: 1700–1704.
12 黄鹤, 李文龙, 吴琨, 等 动态自适应特征融合的MFOPA跟踪器[J]. 电子学报, 2023, 51 (5): 1350- 1358
HUANG He, LI Wenlong, WU Kun, et al MFOPA tracker with dynamic adaptive feature fusion[J]. Acta Electronica Sinica, 2023, 51 (5): 1350- 1358
13 HAO Z, YOU S, LI Y, et al. Learning from synthetic photorealistic raindrop for single image raindrop removal [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision Workshop. Seoul: IEEE, 2019: 4340–4349.
14 黄鹤, 李战一, 胡凯益, 等 融合大气光值-图估计的无人机航拍图像去雾[J]. 哈尔滨工业大学学报, 2023, 55 (5): 88- 97
HUANG He, LI Zhanyi, HU Kaiyi, et al UAV aerial image dehazing by fusion of atmospheric light value and graph estimation[J]. Journal of Harbin Institute of Technology, 2023, 55 (5): 88- 97
doi: 10.11918/202111001
15 HUANG H, LI Z, NIU M, et al A sea fog image defogging method based on the improved convex optimization model[J]. Journal of Marine Science and Engineering, 2023, 11 (9): 1775
doi: 10.3390/jmse11091775
16 BOVIK A C Referenceless prediction of perceptual fog density and perceptual image defogging[J]. IEEE Transactions on Image Processing, 2015, 24 (11): 3888- 3901
doi: 10.1109/TIP.2015.2456502
17 WANG T, YANG X, XU K, et al. Spatial attentive single-image deraining with a high quality real rain dataset [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 12262–12271.
18 WANG Z, BOVIK A C, SHEIKH H R, et al Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13 (4): 600- 612
doi: 10.1109/TIP.2003.819861
19 黄鹤, 胡凯益, 宋京, 等 雾霾线求解透射率的二次优化方法[J]. 西安交通大学学报, 2021, 55 (8): 130- 138
HUANG He, HU Kaiyi, SONG Jing, et al A twice optimization method for solving transmittance with haze-lines[J]. Journal of Xi’an Jiaotong University, 2021, 55 (8): 130- 138
20 黄莺, 胡凯益, 李战一, 等 含明亮区域的无人机遥感定位图像去雾方法[J]. 火力与指挥控制, 2024, 49 (5): 130- 136
HUANG Ying, HU Kaiyi, LI Zhanyi, et al Dehazing method for the remote sensing and positioning image of UAV with bright area[J]. Fire Control and Command Control, 2024, 49 (5): 130- 136
doi: 10.3969/j.issn.1002-0640.2024.05.018
[1] 李沈崇,曾新华,林传渠. 基于轴向注意力的多任务自动驾驶环境感知算法[J]. 浙江大学学报(工学版), 2025, 59(4): 769-777.
[2] 陈文强,王东丹,朱文英,汪勇杰,王涛. 基于时空图注意力网络的车辆多模态轨迹预测模型[J]. 浙江大学学报(工学版), 2025, 59(3): 443-450.
[3] 黎文皓,季彦婕,吴浩,贾叶雯,张水潮. 基于多智体的自动驾驶汽车停车空载收费策略[J]. 浙江大学学报(工学版), 2024, 58(8): 1659-1670.
[4] 冯驰,梅振宇. 基于自动驾驶车辆调度的停车系统收费策略优化[J]. 浙江大学学报(工学版), 2024, 58(1): 87-95.
[5] 曹宁博,赵利英. 路段环境自动驾驶汽车通行权决策方法[J]. 浙江大学学报(工学版), 2022, 56(1): 118-127.
[6] 金立生,华强,郭柏苍,谢宪毅,闫福刚,武波涛. 基于优化DeepSort的前方车辆多目标跟踪[J]. 浙江大学学报(工学版), 2021, 55(6): 1056-1064.
[7] 刘创,梁军. 基于注意力机制的车辆运动轨迹预测[J]. 浙江大学学报(工学版), 2020, 54(6): 1156-1163.
[8] 丰明坤,施祥. 视觉特征深度融合的图像质量评价[J]. 浙江大学学报(工学版), 2019, 53(3): 512-521.
[9] 崔光茫,冯华君,徐之海,李奇,陈跃庭. 基于CSF和仿射重建模型的噪声图像质量评价[J]. 浙江大学学报(工学版), 2016, 50(1): 144-150.
[10] 王翔,丁勇. 基于Gabor滤波器的全参考图像质量评价方法[J]. J4, 2013, 47(3): 422-430.
[11] 楼斌, 沈海斌, 赵武锋, 等. 基于自然图像统计的无参考图像质量评价[J]. J4, 2010, 44(2): 248-252.
[12] 楼斌, 沈海斌, 赵武锋, 等. 基于失真模型的结构相似度图像质量评价[J]. J4, 2009, 43(5): 864-868.
[13] 赵武锋 沈海斌 严晓浪. 基于双树复数小波的结构相似度测量法[J]. J4, 2008, 42(8): 1385-1388.