Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (6): 1243-1254    DOI: 10.3785/j.issn.1008-973X.2024.06.014
电气工程     
含多种灵活性资源的综合能源系统低碳优化调度
邢海军1(),叶宇静1,刘哲远2,江伟建2,张文博1,田书欣1
1. 上海电力大学 电气工程学院,上海 200090
2. 国网浙江省电力有限公司嘉兴供电公司,浙江 嘉兴 314000
Low-carbon optimal scheduling of integrated energy system considering multiple flexible resources
Haijun XING1(),Yujing YE1,Zheyuan LIU2,Weijian JIANG2,Wenbo ZHANG1,Shuxin TIAN1
1. College of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
2. Jiaxing Power Supply Company, State Grid Zhejiang Electric Power Co. Ltd, Jiaxing 314000, China
 全文: PDF(1651 KB)   HTML
摘要:

针对含多园区的综合能源系统(IES)所面临的灵活性和低碳性不足的问题,提出考虑多种灵活性资源的综合能源分布式低碳经济调度模型. 分析系统的灵活性需求,提出IES灵活性裕度约束,并构建包含碳捕集电厂在内的多种灵活性资源模型,充分利用碳捕集电厂的灵活运行模式. 引入阶梯式碳交易,建立综合能源系统双层调度模型. 模型上层以能源供应商供能成本最小为目标,下层以由能量枢纽(EH)组成的能源运营商运行成本最小为目标. 针对多主体运营特性,利用目标级联分析法进行求解,实现能源供应商和能源服务商上下层协同调度. 通过由IEEE30节点电网、比利时20节点气网和多个能量枢纽组成的算例,验证所提模型对提升系统灵活性和低碳性的积极作用.

关键词: 综合能源灵活性碳捕集碳交易目标级联分析法    
Abstract:

An integrated energy distributed low-carbon economic dispatch model that considered multiple flexible resources was proposed, aiming at the problem of insufficient system flexibility and low carbon of integrated energy systems (IES) with multiple parks. Firstly, the flexibility requirements of the system were analyzed, the IES flexibility margin constraints were proposed, and multiple flexibility resource models including carbon capture plants were constructed to make full use of the flexible operation mode of carbon capture plants. Second, ladder-type carbon trading was introduced to establish a two-tier scheduling model for the integrated energy system. The upper layer of the model aimed to minimize the cost of energy supply by energy suppliers, and the lower layer aimed to minimize the operating cost of energy operators consisting of energy hubs (EH). The model was solved by using the objective cascade analysis method to achieve the collaborative scheduling between the upper and lower layers of the energy supplier and energy service provider with respect to the characteristics of the multi-subject operation. Finally, the positive effect of the proposed model on enhancing the system flexibility and low carbon was verified through an arithmetic example consisting of IEEE30-node network, Belgium 20-node gas network and multiple energy hubs.

Key words: integrated energy    flexibility    carbon capture    carbon trading    analytical target cascading
收稿日期: 2023-08-14 出版日期: 2024-05-25
CLC:  TP 393  
基金资助: 国家自然科学基金资助项目(52007112).
作者简介: 邢海军(1979—),男,讲师,硕导,博士,从事综合能源、主动配电网研究. orcid.org/0000-0002-8056-6842. E-mail:xinghj@shiep.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
邢海军
叶宇静
刘哲远
江伟建
张文博
田书欣

引用本文:

邢海军,叶宇静,刘哲远,江伟建,张文博,田书欣. 含多种灵活性资源的综合能源系统低碳优化调度[J]. 浙江大学学报(工学版), 2024, 58(6): 1243-1254.

Haijun XING,Yujing YE,Zheyuan LIU,Weijian JIANG,Wenbo ZHANG,Shuxin TIAN. Low-carbon optimal scheduling of integrated energy system considering multiple flexible resources. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1243-1254.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.06.014        https://www.zjujournals.com/eng/CN/Y2024/V58/I6/1243

图 1  综合能源系统框架图
图 2  综合能源系统灵活性分析的示意图
图 3  碳捕集电厂灵活运行示意图
图 4  能量枢纽结构图
图 5  采用目标级联法的求解流程图
机组编号$ {P_{{\text{G}}i,\max }} $/
MW
$ {P_{{\text{G}}i,\min }} $/
MW
$ {{{a}}_i} $/
(元·MW?2)
$ {{{b}}_i} $/
(元·MW?1)
$ {{{c}}_i} $/元$ {e_{{\text{G}}i}} $/
(t·MW?1·h?1
13501000.014200750.8
2250500.02325012500.6
3150500.0692755000.5
表 2  碳捕集机组参数
图 6  综合能源系统结构图
图 7  综合能源系统负荷数据
物理量变量数值物理量变量数值
最大工作
状态系数
$ \alpha $1.05单位碳捕
集能耗
$ \lambda $/(MW·h·t?1)0.27
碳捕集效率$ \eta $0.9碳交易单价1$ {\lambda _{\text{1}}} $/(元·t?120
碳交易单价2$ {\lambda _2} $/元40碳交易单价3$ {\lambda _3} $/(元·t?160
热电联产电效率$ {\eta _{{\text{CHP,P}}}} $0.6热电联产热效率$ {\eta _{{\text{CHP,H}}}} $0.3
电转气效率$ {\eta _{{\text{P2G}}}} $0.6热泵系数$ {\eta _{{\text{HP}}}} $2.0
燃气锅炉效率$ {\eta _{{\text{GB}}}} $0.7燃气轮机效率$ {\eta _{G{\text{T}}}} $0.6
风电波动系数$ {\lambda _{{\text{wind}}}} $0.09光伏波动系数$ {\lambda _{{\text{pv}}}} $0.17
表 1  综合能源系统设备参数
气源${Q_{w i,\max }}$/MW${Q_{w i,\min }}$/MW$ {\rho _j} $/(元·MW?1)
GW11 200600195
GW21 000500175
表 3  气源参数
场景${F_1}$/万元$ {f_{{\text{c}}{{\text{o}}_2}}} $/万元$ {f_{{\text{ccs}}}} $/万元${E_{\text{G}}}$ /t
场景1327.06.036.85212.1
场景2325.55.835.75449.3
场景3353.835.3070635.0
场景4321.0036.95432.1
表 4  各场景下调度结果
图 8  场景1下的联络线功率
图 9  场景1下考虑灵活性约束时的灵活性供需关系
图 10  场景2下不考虑灵活性约束时的灵活性供需关系
图 11  灵活性安全裕度和总成本关系
图 12  场景1下碳捕集设备能耗
图 13  场景1下碳捕集设备的存储器内液体体积
图 14  碳交易价格的灵敏度分析
图 15  目标级联分析法收敛过程
优化算法Fs/万元Fp/万元tc/s
集中式328.4415.5203
KKT条件转换328.2415.3335
目标级联分析327.0416.7308
表 5  不同优化算法的成本及耗时结果对比
1 邱玥, 陆帅, 陆海, 等 综合能源系统灵活性: 基本内涵、数学模型与研究框架[J]. 电力系统自动化, 2022, 46 (17): 16- 43
QIU Yue, LU Shuai, LU Hai, et al Flexibility of integrated energy system: basic connotation, mathematical model and research framework[J]. Automation of Electric Power Systems, 2022, 46 (17): 16- 43
2 黎静华, 朱梦姝, 陆悦江, 等 综合能源系统优化调度综述[J]. 电网技术, 2021, 45 (6): 2256- 2269
LI Jinghua, ZHU Mengshu, LU Yuejiang, et al Review on optimal scheduling of integrated energy systems[J]. Power System Technology, 2021, 45 (6): 2256- 2269
3 WU S N, LI H Q, LIU Y, et al A two-stage rolling optimization strategy for park-level integrated energy system considering multi-energy flexibility[J]. International Journal of Electrical Power and Energy Systems, 2023, 145: 108600
doi: 10.1016/j.ijepes.2022.108600
4 SUMANTH Y, PRIYANKA K, ANJALI J, et al A stochastic multi-interval scheduling framework to quantify operational flexibility in low carbon power systems[J]. Applied Energy, 2021, 304: 117763
doi: 10.1016/j.apenergy.2021.117763
5 JIANG Y, WAN C, BOTTERUD A, et al Exploiting flexibility of district heating networks in combined heat and power dispatch[J]. IEEE Transactions on Sustainable Energy, 2020, 11 (4): 2174- 2188
doi: 10.1109/TSTE.2019.2952147
6 HUO S J, WANG J J, QIN Y B, et al Operation optimization of district heating network under typical modes for improving the economic and flexibility performances of integrated energy system[J]. Energy Conversion and Management, 2022, 267: 115904
doi: 10.1016/j.enconman.2022.115904
7 边晓燕, 孙明琦, 许家玉, 等 计及灵活性储备的含风电多微电网系统分布式协调调控策略[J]. 电力自动化设备, 2021, 41 (8): 47- 54
BIAN Xiaoyan, SUN Mingqi, XU Jiayu, et al Distributed coordinated dispatch and control strategy of multi-microgrid system with wind power considering flexibility reserve[J]. Electric Power Automation Equipment, 2021, 41 (8): 47- 54
8 张高航, 李凤婷 计及源荷储综合灵活性的电力系统日前优化调度[J]. 电力自动化设备, 2020, 40 (12): 159- 167
ZHANG Gaohang, LI Fengting Day-ahead optimal scheduling of power system considering comprehensive flexibility of source-load-storage[J]. Electric Power Automation Equipment, 2020, 40 (12): 159- 167
9 米剑锋, 马晓芳 中国CCUS技术发展趋势分析[J]. 中国电机工程学报, 2019, 39 (9): 2537- 2543
MI Jianfeng, MA Xiaofang Development trend analysis of carbon capture, utilization and storage technology of china[J]. Proceedings of the CSEE, 2019, 39 (9): 2537- 2543
10 崔杨, 曾鹏, 王铮, 等 计及电价型需求侧响应含碳捕集设备的电–气–热综合能源系统低碳经济调度[J]. 电网技术, 2021, 45 (2): 447- 459
CUI Yang, ZENG Peng, WANG Zheng, et al Low-carbon economic dispatch of electricity-gas-heat integrated energy system with carbon capture equipment considering price-based demand response[J]. Power Sytem Technology, 2021, 45 (2): 447- 459
11 崔杨, 邓贵波, 曾鹏, 等 计及碳捕集电厂低碳特性的含风电电力系统源–荷多时间尺度调度方法[J]. 中国电机工程学报, 2022, 42 (16): 5869- 5886
CUI Yang, DENG Guibo, ZENG Peng, et al Multi-time scale source-load dispatch method of power system with wind power considering low-carbon characteristics of carbon capture power plant[J]. Proceedings of the CSEE, 2022, 42 (16): 5869- 5886
12 齐先军, 蒋中琦, 张晶晶, 等 考虑碳捕集与综合需求响应互补的综合能源系统优化调度[J]. 电力自动化设备, 2023, 43 (7): 133- 141
QI Xianjun, JIANG Zhongqi, ZHANG Jingjing, et al Optimal dispatching of integrated energy system considering complementation of carbon capture and integrated demand response[J]. Electric Power Automation Equipment, 2023, 43 (7): 133- 141
13 陈海鹏, 陈晋冬, 张忠, 等 计及灵活运行碳捕集电厂捕获能耗的电力系统低碳经济调度[J]. 电力自动化设备, 2021, 41 (9): 133- 139
CHEN Haipeng, CHEN Jindong, ZHANG Zhong, et al Low-carbon economic dispatching of power system considering capture energy consumption of carbon capture power plants with flexible operation mode[J]. Electric Power Automation Equipment, 2021, 41 (9): 133- 139
14 王义军, 李梦涵, 齐岩 计及碳捕集电厂综合灵活运行方式的含P2G综合能源系统低碳经济调度[J]. 电力自动化设备, 2023, 43 (1): 1- 8
WANG Yijun, LI Menghan, QI Yan Low-carbon economic dispatching of integrated energy system with P2G considering comprehensive and flexible operation mode of carbon capture power plant[J]. Electric Power Automation Equipment, 2023, 43 (1): 1- 8
15 吉兴全, 张旋, 于一潇, 等 考虑综合能源系统运行灵活性的输配协同优化调度[J]. 电力系统自动化, 2022, 46 (23): 29- 40
JI Xingquan, ZHANG Xuan, YU Yixiao, et al Coordinated optimal dispatch of transmission and distribution power systems considering operation flexibility of integrated energy system[J]. Automation of Electric Power Systems, 2022, 46 (23): 29- 40
16 高瑞阳, 王新宝, 高娴, 等 考虑灵活性资源和多能共享的低碳区域综合能源系统联盟-配电网博弈优化调度[J]. 南方电网技术, 2024, 18 (2): 77- 88
GAO Ruiyang, WANG Xinbao, GAO Xian, et al Optimal dispatching of low-carbon regional integrated energy system alliance and distribution network game considering flexible resources and multi energy sharing[J]. Southern Power System Technology, 2024, 18 (2): 77- 88
17 赵文猛, 刘明波, 周保荣, 等 含风电接入多区域电力系统的分散式随机动态经济调度方法[J]. 中国电机工程学报, 2017, 37 (24): 7087- 7098
ZHAO Wenmeng, LIU Mingbo, ZHOU Baorong, et al Decentralized stochastic dynamic economic dispatch for multi-area power systems with wind power integrated[J]. Proceedings of the CSEE, 2017, 37 (24): 7087- 7098
18 张旋, 张玉敏, 吉兴全, 等 基于目标级联分析法的输电网结构优化[J]. 电力自动化设备, 2023, 43 (2): 218- 224
ZHANG Xuan, ZHANG Yumin, JI Xingquan, et al Optimal transmission switching based on analytical target cascading method[J]. Electric Power Automation Equipment., 2023, 43 (2): 218- 224
19 谢敏, 吉祥, 柯少佳, 等 基于目标级联分析法的多微网主动配电系统自治优化经济调度[J]. 中国电机工程学报, 2017, 37 (17): 4911- 4921
XIE Min, JI Xiang, KE Shaojia, et al Autonomous optimized economic dispatch of active distribution power system with multi-microgrids based on analytical target cascading theory[J]. Proceedings of the CSEE, 2017, 37 (17): 4911- 4921
20 吉兴全, 刘健, 张玉敏, 等 计及运行灵活性约束的综合能源系统优化调度[J]. 电力系统自动化, 2022, 46 (16): 84- 94
JI Xingquan, LIU Jian, ZHANG Yumin, et al Optimal dispatching of integrated energy system considering operation flexibility constraints[J]. Automation of Electric Power Systems, 2022, 46 (16): 84- 94
21 汤翔鹰, 胡炎, 耿琪, 等 考虑多能灵活性的综合能源系统多时间尺度优化调度[J]. 电力系统自动化, 2022, 46 (16): 84- 94
TANG Xiangying, HU Yan, GENG Qi, et al Multi-time-scale optimal scheduling of integrated energy system considering multi-energy flexibility[J]. Automation of Electric Power Systems, 2022, 46 (16): 84- 94
22 叶宇静, 邢海军, 米阳, 等. 考虑低碳需求响应及主从博弈的综合能源系统低碳优化调度 [EB/OL]. (2023-08-25) [2024-03-31]. http://kns.cnki.net/kcms/detail/32.1180.TP.20230824.1932.008.html.
23 黎静华, 王治邦, 姜娟 计及供能可靠性的电-气互联传输网络优化规划[J]. 电力自动化设备, 2021, 2021,41 (9): 164- 172
LI Jinghua, WANG Zhibang, JIANG Juan Optimal planning of integrated electricity-gas transmission network considering energy supply reliability[J]. Electric Power Automation Equipment, 2021, 2021,41 (9): 164- 172
24 何良策. 电-气综合能源系统环境经济调度研究[D]. 燕山: 燕山大学, 2020.
HE Liangce. Research on environmental economic dispatch of integrated electricity and natrual gas system [D]. Yanshan: Yanshan University, 2020.
25 顾海飞. 面向综合能效的区域多能源系统优化调度策略研究 [D]. 南京: 东南大学, 2021.
GU haifei. Study on optimal economic dispatch for regional multi-energy system oriented to comprehensive energy efficiency [D]. Nanjing: Southeast University, 2021.
[1] 王谦,王斌,刘翔. 零碳交易下工业园区综合能源系统优化配置[J]. 浙江大学学报(工学版), 2023, 57(11): 2294-2304.
[2] 朱雅光,刘春潮,张亮. 基于虚拟运动神经网络的六足机器人行为控制[J]. 浙江大学学报(工学版), 2022, 56(6): 1107-1118.
[3] 赵福林,张通,马光,陈哲,郭创新,张金江. 考虑源-荷波动的电力系统灵活性运行域研究[J]. 浙江大学学报(工学版), 2021, 55(5): 935-947.
[4] 陈嘉映,李仲博,林小杰,刘荣,钟崴,俞自涛. 基于映射模型的城市热网热能输运灵活性研究[J]. 浙江大学学报(工学版), 2021, 55(11): 2125-2133.
[5] 李笑竹,王维庆. 区域综合能源系统两阶段鲁棒博弈优化调度[J]. 浙江大学学报(工学版), 2021, 55(1): 177-188.
[6] 张通,刘理峰,杨才明,张伊宁,郭创新,谢栋. 考虑需求响应和风电不确定性的能源系统调度[J]. 浙江大学学报(工学版), 2020, 54(8): 1562-1571.
[7] 杨金垚, 方梦祥, 岑旗钢, 王涛, 何卉. 活性炭捕集燃煤烟气中二氧化碳的模拟分析[J]. 浙江大学学报(工学版), 2018, 52(11): 2142-2149.