Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (11): 2294-2304    DOI: 10.3785/j.issn.1008-973X.2023.11.017
电气工程     
零碳交易下工业园区综合能源系统优化配置
王谦1(),王斌1,刘翔2
1. 上海电气工程设计有限公司,上海 201199
2. 浙江大学 能源工程学院,浙江 杭州 310027
Optimal allocation of integrated energy systems in industrial parks under zero carbon trading
Qian WANG1(),Bin WANG1,Xiang LIU2
1. Shanghai Electric Engineering Consulting Co. Ltd, Shanghai 201199, China
2. College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(2236 KB)   HTML
摘要:

以长三角地区某工业园区为例,提出一套风、光、储一体化,综合考虑园区冷热电汽负荷的优化配置方法. 通过引入0-1型整数规划并以综合能源系统年折算总成本最低为优化目标,合理选择风、光电系统及固体熔盐、蓄电池储能的配置规模. 基于园区热能和电能实时功率变化,证实优化配置方法的合理性. 对含碳交易成本的约束求解表明,综合能源系统的储能设备应向高效率方向转移,热负荷由电极锅炉向空气源热泵转换,蓄电池由锂离子向钠硫电池转换,熔盐储热向镁砖固体储热转换. 在加入综合能源系统后,系统从外部购电、购热成本大幅减少,实现了日折算总成本和总运行成本的双重降低,总运行成本约为原先的20%~40%,日折算总成本仅为目前的30%~40%,且碳、氮、硫排放量显著降低90%以上. 研究结论指明未来各部分储能的发展方向,对于当前建设零碳工业园区具有积极意义.

关键词: 零碳园区综合能源系统配置0-1型整数规划碳交易成本储能系统    
Abstract:

An optimization method was proposed for the integration of wind, light and storage, taking an industrial park in the Yangtze River Delta region as an example, the park's cooling, heating, electricity and steam loads were taken into account. The configuration scale of wind and photovoltaic systems and solid molten salt and battery energy storage were reasonably selected, by introducing 0-1 integer planning and taking the lowest total annual commuted cost of the integrated energy system as the optimization objective. The rationality of the optimal allocation method was confirmed based on the real-time power variation of thermal and electrical energy in the park. Subsequently, the constraint solution with carbon trading costs showed that the energy storage equipment in the integrated energy system should be shifted in the direction of high efficiency, with the heat load be shifted from electrode boilers to air source heat pumps, the battery be shifted from lithium ion to sodium sulphur batteries and the molten salt heat storage be shifted to magnesium brick solid heat storage. The cost of purchasing electricity and heat from the outside of the system was greatly reduced, after joining the integrated energy system. A double reduction in the total daily cost and total operating cost was achieved, with the total operating cost being about 20% to 40% of the original one, the total daily cost becoming only 30% to 40% of the current one, and carbon, nitrogen, and sulphur emissions being significantly reduced by more than 90%. Results indicate the future development direction of each part of the energy storage, which is of very positive significance for the current construction of zero-carbon industrial parks.

Key words: zero carbon park    integrated energy system configuration    0-1 integer planning    carbon trading cost    energy storage system
收稿日期: 2022-12-02 出版日期: 2023-12-11
CLC:  TK 89  
基金资助: 中央高校基本科研业务费专项资金资助项目(2022ZFJH04)
作者简介: 王谦(1983—),男,高级工程师,硕士,从事新能源、火力发电研究. orcid/org/0009-0003-4230-1725. E-mail: handsomewy2013@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王谦
王斌
刘翔

引用本文:

王谦,王斌,刘翔. 零碳交易下工业园区综合能源系统优化配置[J]. 浙江大学学报(工学版), 2023, 57(11): 2294-2304.

Qian WANG,Bin WANG,Xiang LIU. Optimal allocation of integrated energy systems in industrial parks under zero carbon trading. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2294-2304.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.11.017        https://www.zjujournals.com/eng/CN/Y2023/V57/I11/2294

图 1  园区所在地区全年太阳辐射量图
图 2  园区所在地区全年日照时数
图 3  园区所在地区全年风速图
图 4  园区典型日24 h风速图
图 5  工业园区基本负荷情况
图 6  电、热、冷、汽四联供综合能源系统图
图 7  电能设备优化图(方案2)
图 8  电能设备优化图(方案3)
图 9  热能设备优化图(方案2)
图 10  热能设备优化图(方案3)
参数设备 效率 Cinv/(元·kW?1 COM/(元·kW?1·h?1 Tlife/a
光伏系统 ${\eta }_{ {\rm{PV} } }=15.4 {\text{%}}$${\eta }_{{\rm{INV}}}=$ 90% 6000 0.012 25
分散式风电系统 ${\xi }_{ {\rm{loss} } }=5 {\text{%}}$${K}_{ {\rm{w} } }=$ 0~100% 8000 0.020 20
表 1  可再生能源系统参数表
参数设备 θw/℃ cp/(kJ·kg?1?℃?1) λ/(W·m?1·K?1 hs/(kJ·kg?1 Cins COM(元·kW?1·h?1 Tlife/a
熔盐储热 <600 1.46 0.5 427(260~565 ℃) 300 元/(kW·h) 0.0015 5
固体储热(镁砖) >750 1.15 4.5~6.0 683(100~750 ℃) 1000 元/(kW·h) 0.002 0 20
固体颗粒储热(矿渣) >1000 0.87 2.0 786(100~1000 ℃) 100 元/(kW·h) 0.001 0 3
电极锅炉 1000 元/kW 0.002 0 20
热泵 8000 元/kW 0.0015 20
电加热器 3200 元/kW 0.002 0 15
蒸汽发生器 4000 元/kW 0.0014 10
表 2  储热系统参数表
参数设备 Ce/(元·kW?1 Cins/(元·kW?1?h?1 Cycle Cyclea Tlife/a Ec-d/% rdis/% 商业化阶段
铅酸电池 300 700 2000~3000 350 5 75 6 商业化
锂离子电池 300 2000 2000~3000 350 8 88 6 商业化
全钒液流电池 1746 12000 12000~20000 350 30 80 6 商业化早期
钠硫电池 3000 3500 6000~10000 350 20 95 6 商业化早期
表 3  蓄电池储能系统参数表
时段 Pbuy/
(元·kW?1·h?1
Psal/
(元·kW?1·h?1
峰时段 10:00—15:00
18:00—21:00
0.88 0.74
平时段 07:00—10:00
15:00—18:00
21:00—23:00
0.54 0.43
谷时段 00:00—07:00
23:00—24:00
0.22 0.18
表 4  园区所在地分时购/售电价表
参数
能源
类型
碳排放 SO2排放 氮氧化物排放
Eris/
(g·kW?1·
h?1
Cdis/
(元·
t?1
Eris/
(g·kW?1·
h?1
Cdis/
(元·t?1
Eris/
(g·kW?1·
h?1
Cdis/
(元·t?1
电网
购电
0.581 252 6.4 1000 2.32 1950
风力
发电
0.014 252 1000 1950
光伏
发电
0.011 252 1000 1950
表 5  不同能源链的二氧化碳及其他污染物排放系数及成本
项目
方案
PPV/MW Pw/MW Qeh/kW Qec/kW Pr/Qr Pb/Qb Ps/kW Peg/MW
方案1 0 0 1000 200 0 0 0 0
方案2 1 3 500 200 2 MW/20 MW·h
(熔盐)
2 MW/22 MW·h
(铅酸电池)
300 2
方案3 1 3 600 200 1 MW/11 MW·h
(熔盐)
800 kW/6 MW·h
(锂电池)
300 1
表 6  不同方案设备配置表
图 11  电能设备优化图(方案4)
图 12  热能设备优化图(方案4)
运行效益 Trc /元 Ace /t Ctc /元 Ope /t Cpe /元 Ceg /元 Ftr /元
方案1 31512 24.95 6288 0.380 469 31209 0
方案2 9045 16.73 4105 0.250 298 6231 6341
方案3 10573 3.82 876 0.046 57 1300 467
表 7  系统经济性估算
图 13  零碳园区不同方案设备占比变化趋势
图 14  不同方案下污染物排放量及日折算综合成本变化趋势
1 王伟亮, 王丹, 贾宏杰, 等 能源互联网背景下的典型区域综合能源系统稳态分析研究综述[J]. 中国电机工程学报, 2016, 36 (12): 3292- 3306
WANG Wei-liang, WANG Dan, JIA Hong-jie, et al Review of steady-state analysis of typical regional integrated energy system under the background of energy internet[J]. Proceedings of the CSEE, 2016, 36 (12): 3292- 3306
doi: 10.13334/j.0258-8013.pcsee.152858
2 黄震, 谢晓敏. 碳中和愿景下的能源变革[J]. 中国科学院院刊, 2021, 36(9): 1010-1018.
HUANG Zheng, XIE Xiao-min. Energy revolution under vision of carbon neutrality[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(9): 1010-1018.
3 易文飞, 张艺伟, 黄永章, 等 考虑综合需求侧响应的区域性综合能源系统运行优化[J]. 华北电力大学学报: 自然科学版, 2019, 46 (3): 33- 41
YI Wen-fei, ZHANG Yi-wei, HUANG Yong-zhang, et al Operation optimization of regional integrated energy system considering integrated demand side response[J]. Journal of North China Electric Power University: Natural Science Edition, 2019, 46 (3): 33- 41
4 FANG R Multi-objective optimized operation of integrated energy system with hydrogen storage[J]. International Journal of Hydrogen Energy, 2019, 44 (56): 29409- 29417
doi: 10.1016/j.ijhydene.2019.02.168
5 VELIK R, NICOLAY P A cognitive decision agent architecture for optimal energy management of microgrids[J]. Energy Conversion and Management, 2014, 86: 831- 847
doi: 10.1016/j.enconman.2014.06.047
6 徐达, 杨淑连, 朱成龙, 等. 考虑需求侧响应的热电联供型微网经济优化运行[J]. 科学技术与工程. 2020, 20(11): 4375-4382.
XU Da, YANG Shu-lian, ZHU Cheng-long, et al. Optimized operation of heat and power microgrid on demand[J]. Science Technology and Engineering, 2020, 20(11): 4375-4382.
7 李红伟, 张翔, 周海林, 等. 考虑源荷不确定性的综合能源系统日前经济调度[J]. 科学技术与工程, 2021, 21(18): 7537-7543.
LI Hong-wei, ZHANG Xiang, ZHOU Hai-lin, et al. Day-ahead economic dispatch of integrated energy system considering source load uncertainty[J]. Science Technology and Engineering, 2021, 21(18): 7537-7543.
8 郑海雁, 邹磊, 杨斌, 等. 含储能装置的园区综合能源系统三级协同规划设计方法[J]. 科学技术与工程, 2021, 21(7): 2705-2712.
ZHENG Hai-yan, ZOU Lei, YANG Bin, et al. Three-level collaborative optimal design method of park-type integrated energy system with energy storage devices[J]. Science Technology and Engineering, 201, 21(7): 2705-2712.
9 李柳松, 杨莉 考虑多功能区差异性以及冷热电负荷平衡的综合能源系统规划[J]. 能源工程, 2020, (3): 1- 7
LI Liu-song, YANG Li Integrated energy system planning considering the difference of multiple functional areas and balance of cooling, heating and power loads[J]. Energy Engineering, 2020, (3): 1- 7
doi: 10.16189/j.cnki.nygc.2020.03.001
10 杨宏基, 周明, 武昭原, 等 含光热电站的电-热能源系统优化运行机制[J]. 电网技术, 2022, 46 (1): 175- 185
YANG Hong-ji, ZHOU Ming, WU Zhao-yuan, et al Optimal operation of electro-thermal energy system with concentrated solar power plant[J]. Power System Technology, 2022, 46 (1): 175- 185
11 中国气象局公共气象服务中心. 太阳能资源评估方法: GB/T 37526-2019[S]. 北京: 中国气象局, 2019.
12 王丹, 赵平, 师二广, 等 基于有限理性决策的分布式风电开发模式[J]. 电力系统自动化, 2018, 42 (20): 31- 37
WANG Dan, ZHAO Ping, SHI Er-guang, et al Distributed wind power development model based on bounded rational decision[J]. Automation of Electric Power Systems, 2018, 42 (20): 31- 37
doi: 10.7500/AEPS20171208009
13 马红明, 刘林青, 谢海鹏, 等. 计及综合需求响应的电-热综合能源系统分布式光伏最大接入容量评估[J]. 智慧电力, 2021, 49(8): 23-30.
MA Hong-ming, LIU Lin-qing, XIE Hai-peng, et al. Maximum access capacity assessment of distributed photovoltaic in integrated electric-thermal system considering integrated demand response[J]. Smart Power, 2021, 49(8): 23-30.
14 王晓东. 分布式风力发电系统原理与设计[M]. 北京: 科学出版社社, 2019.
15 李中浩, 余娟, 杨知方, 等. 精准计及大规模储能电池寿命的电力系统经济调度[J]. 中国电机工程学报, 2023, 43(19): 1-13.
LI Zhong-hao, YU Juan, YANG Zhi-fang, et al. Economic dispatch of power system accurately considering the life of large-scale energy storage battery[J]. Proceedings of the CSEE, 2023, 43(19): 1-13.
16 王智, 尹楠, 杨佳霖 楼宇型分布式能源系统优化设计与敏感性分析[J]. 热力发电, 2020, 49 (3): 45- 52
WANG Zhi, YIN Nan, YANG Jia-lin Optimization design and sensitivity analysis of building-type distributed energy system[J]. Thermal Power Generation, 2020, 49 (3): 45- 52
doi: 10.19666/j.rlfd.201909209
17 李洪言,于淼,郑一鸣,等 基于情景的2050年世界能源供需展望分析: 基于《bp世界能源展望(2023年版)》[J]. 天然气与石油, 2022, (1): 128
LI Hong-yan, YU Miao, ZHENG Yi-ming, et al Scenario based analysis on the outlook for global energy supply and demand in 2050: based on bp Energy Outlook (2023 edition)[J]. Natural Gas and Oil, 2022, (1): 128
[1] 杨锡运,刘雅欣,马文兵,邢国通,高峰. 考虑风电不确定性的风电场参与调频市场投标策略[J]. 浙江大学学报(工学版), 2022, 56(4): 736-744.
[2] 席仁强,杜修力,王丕光,许成顺,许坤. 单桩式海上风力机整体化地震反应[J]. 浙江大学学报(工学版), 2021, 55(4): 757-766.
[3] 周文杰,王立忠,汤旅军,国振,芮圣洁,黄玉佩. 导管架基础海上风机动力响应数值分析[J]. 浙江大学学报(工学版), 2019, 53(8): 1431-1437.
[4] 王强,罗坤,吴春雷,樊建人. 耦合风电场参数化模型的天气预报模式对风资源的评估和验证[J]. 浙江大学学报(工学版), 2019, 53(8): 1572-1581.
[5] 袁行飞,余俊伟. 屋顶安装型风力机塔架风振反应分析[J]. J4, 2013, 47(11): 1911-1916.
[6] 袁行飞, 张瑛. 安中大楼风环境模拟及风能利用[J]. J4, 2013, 47(10): 1790-1797.