机械工程、能源工程 |
|
|
|
|
基于多子空间加权移动窗主成分分析的全厂流程早期故障检测 |
宋易盟( ),宋冰*( ),侍洪波,康永波 |
华东理工大学 能源化工过程智能制造教育部重点实验室,上海 200237 |
|
Multiple subspace weighted moving window PCA for plant-wide process incipient fault detection |
Yimeng SONG( ),Bing SONG*( ),Hongbo SHI,Yongbo KANG |
Key Laboratory of Smart Manufacturing in Energy Chemical Process of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China |
引用本文:
宋易盟,宋冰,侍洪波,康永波. 基于多子空间加权移动窗主成分分析的全厂流程早期故障检测[J]. 浙江大学学报(工学版), 2024, 58(10): 2076-2083.
Yimeng SONG,Bing SONG,Hongbo SHI,Yongbo KANG. Multiple subspace weighted moving window PCA for plant-wide process incipient fault detection. Journal of ZheJiang University (Engineering Science), 2024, 58(10): 2076-2083.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.10.011
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I10/2076
|
1 |
SILVA A F, VERCRUYSSE J, VERVAET C, et al In-depth evaluation of data collected during a continuous pharmaceutical manufacturing process: a multivariate statistical process monitoring approach[J]. Journal of Pharmaceutical Sciences, 2019, 108 (1): 439- 450
doi: 10.1016/j.xphs.2018.07.033
|
2 |
TAO Y, SHI H, SONG B, et al A distributed adaptive monitoring method for performance indicator in large-scale dynamic process[J]. IEEE Transactions on Industrial Informatics, 2023, 19 (10): 10425- 10433
doi: 10.1109/TII.2023.3240732
|
3 |
LIU D, SHANG J, CHEN M Principal component analysis-based ensemble detector for incipient faults in dynamic processes[J]. IEEE Transactions on Industrial Informatics, 2021, 17 (8): 5391- 5401
doi: 10.1109/TII.2020.3031496
|
4 |
贾瑶, 李帅, 柴天佑 金矿生产全流程控制系统设计与实现[J]. 控制工程, 2022, 29 (5): 873- 887 JIA Yao, LI Shuai, CHAI Tianyou Design and implementation of whole process control system for gold ore production[J]. Control Engineering of China, 2022, 29 (5): 873- 887
|
5 |
ZHOU J, ZHANG S, WANG J A dual robustness projection to latent structure method and its application[J]. IEEE Transactions on Industrial Electronics, 2021, 68 (2): 1604- 1614
doi: 10.1109/TIE.2020.2970664
|
6 |
MA J, ZHANG J Progress of process monitoring for the multi-mode process: a review[J]. Applied Sciences, 2022, 12 (14): 7207
doi: 10.3390/app12147207
|
7 |
WANG B, YAN X, JIANG Q, et al Generalized dice’s coefficient-based multi-block principal component analysis with bayesian inference for plant-wide process monitoring[J]. Journal of Chemometrics, 2015, 29 (3): 165- 178
doi: 10.1002/cem.2687
|
8 |
CHEN X, WANG J, DING S X Complex system monitoring based on distributed least squares method[J]. IEEE Transactions on Automation Science and Engineering, 2021, 18 (14): 1892- 1900
|
9 |
JIANG Q, YAN X, HUANG B Performance-driven distributed PCA process monitoring based on fault-relevant variable selection and bayesian inference[J]. IEEE Transactions on Industrial Electronics, 2015, 63 (1): 377- 386
|
10 |
KONG X, YANG Z, LUO J, et al Extraction of reduced fault subspace based on KDICA and its application in fault diagnosis[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 3505212
|
11 |
王光, 单发顺, 钱禹丞, 等 基于集成学习传递熵的化工过程微小故障检测方法[J]. 化工学报, 2023, 74 (7): 2967- 2978 WANG Guang, SHAN Fashun, QIAN Yucheng, et al Incipient fault detection method for chemical process based on ensemble learning transfer entropy[J]. CIESC Journal, 2023, 74 (7): 2967- 2978
|
12 |
CHEN Z, YANG C, PENG T, et al A cumulative canonical correlation analysis-based sensor precision degradation detection method[J]. IEEE Transactions on Industrial Electronics, 2019, 8 (66): 6321- 6330
|
13 |
WONG P K, YANG Z, VONG C M, et al Real-time fault diagnosis for gas turbine generator systems using extreme learning machine[J]. Neurocomputing, 2014, 128: 249- 257
|
14 |
DENG X, CAI P, CAO Y, et al Two-step localized kernel principal component analysis based incipient fault diagnosis for nonlinear[J]. Industrial and Engineering Chemistry Research, 2020, 59 (13): 5956- 5968
doi: 10.1021/acs.iecr.9b06826
|
15 |
PILARIO K E S, CAO Y Canonical variate dissimilarity analysis for process incipient fault detection[J]. IEEE Transactions on Industrial Informatics, 2018, 14 (12): 5308- 5315
doi: 10.1109/TII.2018.2810822
|
16 |
QIN Y, YAN Y, JI H, et al Recursive correlative statistical analysis method with sliding windows for incipient fault detection[J]. IEEE Transactions on Industrial Electronics, 2022, 69 (4): 4185- 4194
doi: 10.1109/TIE.2021.3070521
|
17 |
FENG Z, LI Y, XIAO B, et al Process monitoring of abnormal working conditions in the zinc roasting process with an ALD-based LOF-PCA method[J]. Process Safety and Environmental Protection, 2022, 161: 640- 650
doi: 10.1016/j.psep.2022.03.064
|
18 |
ZENG J, HUANG W, WANG Z, et al Mutual information-based sparse multiblock dissimilarity method for incipient fault detection and diagnosis in plant-wide process[J]. Journal of Process Control, 2019, 83: 63- 76
doi: 10.1016/j.jprocont.2019.09.004
|
19 |
CAO Y, YUAN X, WANG Y, et al Hierarchical hybrid distributed PCA for plant-wide monitoring of chemical processes[J]. Control Engineering Practice, 2021, 111: 104784
doi: 10.1016/j.conengprac.2021.104784
|
20 |
BROWN G, POCOCK A, ZHAO M J, et al Conditional likelihood maximisation: a unifying framework for information theoretic feature selection[J]. The Journal Of Machine Learning Research, 2012, 13 (1): 27- 66
|
21 |
AMIN M T, KHAN F, AHMED S, et al A data-driven Bayesian network learning method for process fault diagnosis[J]. Process Safety and Environmental Protection, 2021, 150: 110- 122
doi: 10.1016/j.psep.2021.04.004
|
22 |
CHEN H, JIANG B, ZHANG T, et al Data-driven and deep learning-based detection and diagnosis of incipient faults with application to electrical traction systems[J]. Neurocomputing, 2020, 396: 429- 437
doi: 10.1016/j.neucom.2018.07.103
|
23 |
KONG X, BI Y, GLASS D Detecting anomalies in sequential data augmented with new features[J]. Artificial Intelligence Review, 2020, 53 (1): 625- 652
doi: 10.1007/s10462-018-9671-x
|
24 |
JIANG Q, YAN X Nonlinear plant-wide process monitoring using MI-spectral clustering and Bayesian inference-based multiblock KPCA[J]. Journal of Process Control, 2015, 32: 38- 50
doi: 10.1016/j.jprocont.2015.04.014
|
25 |
DOWNS J J, VOGEL E F A plant-wide industrial process control problem[J]. Computers and Chemical Engineering, 1993, 17 (3): 245- 255
doi: 10.1016/0098-1354(93)80018-I
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|