Inverse problem solution of pipeline leakage model based on particle swarm optimization and sensitivity analysis" /> 基于PSO的管道泄漏模型反问题求解及敏感性分析
 计算机技术﹑电信技术

1.浙江大学 智能系统与控制研究所,浙江 杭州 310027；2.浙江大学 工业控制技术国家重点实验室,浙江 杭州 310027
Inverse problem solution of pipeline leakage model based on particle swarm optimization and sensitivity analysis
CHEN Te-huan1, XU Wei-hua2, XU Chao2, XIE Lei2
1. Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China; 2. State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1355 KB)   HTML

Abstract:

The detection of the pipeline leakage can be formulated as an inverse problem which is solved by using the particle swarm optimization (PSO) method. The sensitivity analysis was conducted with respect to various pipeline parameters (such as Darcy-Weisbach friction factor f and leakage holes flow coefficient C1, etc.). The results of robust corresponding to these parameters were given. A classical pipeline model governed by nonlinear hyperbolic partial differential equations (PDEs) was employed to obtain a numerical simulation based on the experimental platform. Then the PSO algorithm was used to search leakage parameters and perturbations were introduced to implement sensitivity analysis. Results demonstrate that the particle swarm algorithm’s robustness towards parameters decreases with the parameter’s sensitivity increases.

 : TP 277

#### 引用本文:

CHEN Te-huan, XU Wei-hua, XU Chao, XIE Lei.

Inverse problem solution of pipeline leakage model based on particle swarm optimization and sensitivity analysis
. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.10.020.

#### 链接本文:

 ［1］ 罗刚.我国油气管道总长度已达9.3万km［J］.焊管,2012,35(7): 78. LUO Gang. Oil and gas pipelines in our country has reached the total length of 93000 km ［J］. Welded Pipe and Tube, 2012, 35(7)： 78. ［2］ 张超,杨基春.浅析管道泄漏的原因及对策［J］.应用能源技术,2008(8)： 710. ZHANG Chao, YANG Ji-chun. Reasons of pipeline leak and its solutions ［J］. Applied Energy Technology, 2008(8): 710. ［3］ 蒋仕章,蒲家宁.水力瞬变特征线法和隐式差分法的对比分析［J］.油气储运,2001,20(1)： 12-14. JIANG Shi-zhang, PU Jia-ning. Correlation analysis of characteristic method and implicit difference method for fluid transient in long distance pipeline ［J］. Oil and Gas Storage and Transportation,2001,20(1)： 12-14. ［4］ 董东,王桂增.Kalman滤波器在长输管道泄漏诊断中的应用［J］.自动化学报,1990,16(4)： 303-309. DONG Dong, WANG Gui-zeng. An application of Kalman filter to leak diagnosis of long-distance transport pipelines ［J］. Acta Automatica Sinica, 1900, 16(4): 303-309. ［5］ RAHIMAN W,WU Bu-zhou,DING Zheng-tao. Fault detection using high gain observer: application in pipeline system ［C］∥ Proceeding of the UKACC International Conference on Control. UK: University of Manchester, 2008. ［6］ 王桂增,叶昊.流体输送管道的泄漏检测与定位［M］.北京: 清华大学出版社, 2010. ［7］ BLAZIC S, MATKO D, GEIGER G. Simple model of a multi-batch driven pipeline ［J］. Mathematics and Computers in Simulation, 2004, 64 (6): 617-630. ［8］ LIU Ming, ZANG Shu, ZHOU Dong-hua. Fast leak detection and location of gas pipeline based on an adaptive particle filter ［J］. International Journal of Applied Mathematics and Computer Science, 2005, 15(4): 541-550. ［9］ 严大凡.输油管道设计与管理［M］.北京：石油工业出版社,1986: 157-160. ［10］ VERDE C. Multi-leak detection and isolation in fluid pipelines ［J］. Control Engineering Practice, 2001, 9 (6): 673-682. ［11］ CLERC M, KENNEDY J. The particle swarm: explosion, stability, and convergence in a multidimensional complex space ［J］. IEEE Transaction on Evolutionary Computation, 2002, 6(1): 58-73. ［12］ 翟远征,王金生,苏小四,等.地下水数值模拟中的参数敏感性分析［J］.人民黄河,2010,32(12): 99-101. ZHAI Yuan-zheng, WANG Jin-sheng, SU Xiao-si, et al. Parameter sensitivity analysis of groundwater numerical simulation ［J］. Yellow River, 2010, 32(12): 99-101. ［13］ FASSO A, PERRI P. Sensitivity analysis ［M］. Encyclopedia of Environmentrics, 2002: 1968-1982. ［14］ LENHART T, ECKHARDT K, FOHRER N, et al. Comparison of two different approaches of sensitivity analysis ［J］. Physics and Chemistry of the Earth, 2002, 27 (9/10): 645-654.
 [1] 谭晓栋,罗建禄,李庆,邱静. 机械系统的故障演化测试性建模及预计[J]. 浙江大学学报(工学版), 2016, 50(3): 442-448. [2] 李德骏, 杨竣程, 林冬冬, 杨灿军, 金波, 陈鹰. 单片机与CPLD技术的海底接驳盒 电能监控系统[J]. J4, 2012, 46(8): 1369-1374. [3] 于保华, 杨世锡,周晓峰. 基于故障-测点互信息的传感器多目标优化配置[J]. J4, 2012, 46(1): 156-162. [4] 段斌, 梁军, 费正顺, 杨敏, 胡斌. 基于GA-ANN的非线性半参数建模方法[J]. J4, 2011, 45(6): 977-983. [5] 曹玉苹, 田学民. 基于信息散度的过程故障检测与诊断[J]. J4, 2010, 44(7): 1315-1320. [6] 徐贵斌, 周东华. 基于在线学习神经网络的状态依赖型故障预测[J]. J4, 2010, 44(7): 1251-1254. [7] 杜文莉, 王坤, 钱锋. 基于特征空间降维的溶剂脱水分离过程监控[J]. J4, 2010, 44(7): 1255-1259. [8] 林勇, 周晓军, 杨先勇, 等. 基于双谱识别和人工免疫网络的智能故障检测[J]. J4, 2009, 43(10): 1777-1782.