土木工程、交通工程 |
|
|
|
|
混凝土热-水-化-干湿应变多场耦合模型 |
余思臻1,2( ),漆天奇3,王桥1,2,程勇刚1,2,*( ),周伟1,2,常晓林1,2 |
1. 武汉大学 水资源工程与调度全国重点实验室,湖北 武汉 430072 2. 武汉大学 水工程科学研究院,湖北 武汉 430072 3. 长江勘测规划设计研究有限责任公司,湖北 武汉 430010 |
|
Thermo-hygro-chemical-dry-wet strain multi-field coupled model of concrete |
Si-zhen YU1,2( ),Tian-qi QI3,Qiao WANG1,2,Yong-gang CHENG1,2,*( ),Wei ZHOU1,2,Xiao-lin CHANG1,2 |
1. State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China 2. Institute of Water Engineering Sciences, Wuhan University, Wuhan 430072, China 3. Changjiang Institute of Survey, Planning, Design and Research Co. Ltd, Wuhan 430010, China |
引用本文:
余思臻,漆天奇,王桥,程勇刚,周伟,常晓林. 混凝土热-水-化-干湿应变多场耦合模型[J]. 浙江大学学报(工学版), 2023, 57(8): 1585-1596.
Si-zhen YU,Tian-qi QI,Qiao WANG,Yong-gang CHENG,Wei ZHOU,Xiao-lin CHANG. Thermo-hygro-chemical-dry-wet strain multi-field coupled model of concrete. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1585-1596.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.08.011
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I8/1585
|
1 |
WU S X, HUANG D H, LIN F B, et al Estimation of cracking risk of concrete at early age based on thermal stress analysis[J]. Journal of Thermal Analysis and Calorimetry, 2011, 105 (1): 171- 186
doi: 10.1007/s10973-011-1512-y
|
2 |
唐世斌. 混凝土温湿型裂缝开裂过程细观数值模型研究[D]. 大连: 大连理工大学, 2009. TANG Shi-bin. Study on mesoscopic numerical model of concrete cracking process of temperature-wet crack [D]. Dalian: Dalian University of Technology, 2009.
|
3 |
ZHOU W, QI T Q, LIU X H, et al A hygro-thermo-chemical analysis of concrete at an early age and beyond under dry-wet conditions based on a fixed model[J]. International Journal of Heat and Mass Transfer, 2017, 115: 488- 499
|
4 |
ZHOU W, FENG C Q, LIU X H, et al A macro-meso chemo-physical analysis of early-age concrete based on a fixed hydration model[J]. Magazine of Concrete Research, 2016, 68 (19): 981- 994
doi: 10.1680/jmacr.15.00321
|
5 |
ZHOU W, QI T Q, LIU X H, et al A meso-scale analysis of the hygro-thermo-chemical characteristics of early-age concrete[J]. International Journal of Heat and Mass Transfer, 2019, 129: 690- 706
doi: 10.1016/j.ijheatmasstransfer.2018.10.001
|
6 |
LI X, REN J J, WANG J, et al Drying shrinkage of early-age concrete for twin-block slab track[J]. Construction and Building Materials, 2020, 243: 118237
doi: 10.1016/j.conbuildmat.2020.118237
|
7 |
刘加平, 田倩, 王育江, 等 现代混凝土收缩开裂的评估方法与控制关键技术[J]. 工程, 2021, 7 (3): 348- 357 LIU Jia-ping, TIAN Qian, WANG Yu-jiang, et al Evaluation method and mitigation strategies for shrinkage cracking of modern concrete[J]. Engineering, 2021, 7 (3): 348- 357
doi: 10.1016/j.eng.2021.01.006
|
8 |
刘有志, 张国新 混凝土干缩开裂机理宏、细观力学分析研究进展[J]. 水力发电, 2013, 39 (4): 24- 28 LIU You-zhi, ZHANG Guo-xin Research progress on macro and micro mechanics analysis of dry shrinkage cracking mechanism of concrete[J]. Water Power, 2013, 39 (4): 24- 28
doi: 10.3969/j.issn.0559-9342.2013.04.008
|
9 |
高珊. 混凝土面板堆石坝面板裂缝统计分析及渗流数值模拟研究[D]. 西安: 西安理工大学, 2021. GAO Shan. Statistical analysis and seepage numerical simulation of concrete face rockfill dam[D]. Xi’an: Xi’an University of Technology, 2021.
|
10 |
BENTZ D P, WALLER V, LARRARD D F Prediction of adiabatic temperature rise in conventional and high-performance concretes using a 3-D microstructural model[J]. Cement and Concrete Research, 1998, 28 (2): 285- 297
doi: 10.1016/S0008-8846(97)00264-0
|
11 |
KIM J K, LEE C S Moisture diffusion of concrete considering self-desiccation at early ages[J]. Cement and Concrete Research, 1999, 29 (12): 1921- 1927
doi: 10.1016/S0008-8846(99)00192-1
|
12 |
ZHANG J, GAO Y, HAN Y D, et al Shrinkage and interior humidity of concrete under dry-wet cycles[J]. Drying Technology, 2012, 30 (6): 583- 596
doi: 10.1080/07373937.2011.653614
|
13 |
RUIZ C M, OLIVER O X, PRATO T Thermo-chemical- mechanical model for concrete. I: hydration and aging[J]. Journal of Engineering Mechanics, 1999, 125 (9): 1018- 1027
doi: 10.1061/(ASCE)0733-9399(1999)125:9(1018)
|
14 |
CERVERA M, FARIA R, OLIVER J, et al Numerical modelling of concrete curing, regarding hydration and temperature phenomena[J]. Computers and Structures, 2002, 80 (18/19): 1511- 1521
|
15 |
ULM F J, COUSSY O Modeling of thermo-chemical- mechanical couplings of concrete at early ages[J]. Journal of Engineering Mechanics, 1995, 121 (7): 785- 794
doi: 10.1061/(ASCE)0733-9399(1995)121:7(785)
|
16 |
BAŽANT Z P, NAJJAR L J Nonlinear water diffusion in nonsaturated concrete[J]. Matériaux et Construction, 1972, 5 (1): 3- 20
|
17 |
GAWIN D, PESAVENTO F, SCHREFLER B A Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond. Part I: hydration and hygro-thermal phenomena[J]. International Journal for Numerical Methods in Engineering, 2006, 67 (3): 299- 331
doi: 10.1002/nme.1615
|
18 |
LUZIO D G, CUSATIS G Hygro-thermo-chemical modeling of high performance concrete. I: theory[J]. Cement and Concrete Composites, 2009, 31 (5): 301- 308
doi: 10.1016/j.cemconcomp.2009.02.015
|
19 |
LUZIO D G, CUSATIS G Hygro-thermo-chemical modeling of high-performance concrete. II: numerical implementation, calibration, and validation[J]. Cement and Concrete Composites, 2009, 31 (5): 309- 324
doi: 10.1016/j.cemconcomp.2009.02.016
|
20 |
JENDELE L, SMILAUER V, CERVENKA J Multiscale hydro-thermo-mechanical model for early-age and mature concrete structures[J]. Advances in Engineering Software, 2014, 72: 134- 146
doi: 10.1016/j.advengsoft.2013.05.002
|
21 |
SHEN D J, LIU C, WANG M L, et al Prediction model for internal relative humidity in early-age concrete under different curing humidity conditions[J]. Construction and Building Materials, 2020, 265: 119987
doi: 10.1016/j.conbuildmat.2020.119987
|
22 |
RHODES J A, CARREIRA D J. Prediction of creep, shrinkage, and temperature effects in concrete structures [J]. American Concrete Institute, 1982.
|
23 |
GILLILAND J A. Thermal and shrinkage effects in high performance concrete structures during construction[M]. University of Calgary, 2000.
|
24 |
高原, 张君, 孙伟 干湿循环下混凝土湿度与变形的测量[J]. 清华大学学报: 自然科学版, 2012, 52 (2): 144- 149 GAO Yuan, ZHANG Jun, SUN Wei Measurement of concrete moisture and deformation under dry-wet cycle[J]. Journal of Tsinghua University: Science and Technology, 2012, 52 (2): 144- 149
|
25 |
钟卓, 黄乐鹏, 张恒 混凝土内部湿度场与自约束应力场的研究[J]. 硅酸盐通报, 2021, 40 (8): 2609- 2621 ZHONG Zhuo, HUANG Le-peng, ZHANG Heng Study on humidity field and self-constrained stress field in concrete[J]. Bulletin of the Chinese Ceramic Society, 2021, 40 (8): 2609- 2621
doi: 10.16552/j.cnki.issn1001-1625.2021.08.011
|
26 |
高原. 干湿环境下混凝土收缩与收缩应力研究[D]. 北京: 清华大学, 2013. GAO Yuan. Study on shrinkage and shrinkage stress of concrete in dry and wet environment[D]. Beijing: Tsinghua University, 2013.
|
27 |
PANTAZOPOULOU S J, MILLS R H Microstructural aspects of the mechanical response of plain concrete[J]. Materials Journal, 1995, 92 (6): 605- 616
|
28 |
BAŽANT Z P, PRASANNAN S Solidification theory for concrete creep. I: formulation[J]. Journal of Engineering Mechanics, 1989, 115 (8): 1691- 1703
|
29 |
NEVILLE A M. Properties of concrete[M]. London: Longma , 1995.
|
30 |
BAZANT Z P, THONGUTHAI W Pore pressure and drying of concrete at high temperature[J]. Journal of the Engineering Mechanics Division, 1978, 104 (5): 1059- 1079
doi: 10.1061/JMCEA3.0002404
|
31 |
阴国强, 张秀崧, 卢晓春, 等 等温条件下混凝土内部湿迁移规律研究[J]. 水电能源科学, 2022, 40 (4): 162- 165 YIN Guo-qiang, ZHANG Xiu-song, LU Xiao-chun, et al Study on the law of wet migration in concrete under isothermal conditions[J]. Water Resources and Power, 2022, 40 (4): 162- 165
|
32 |
KANG S T, KIM J S, LEE Y, et al Moisture diffusivity of early age concrete considering temperature and porosity[J]. KSCE Journal of Civil Engineering, 2012, 16 (1): 179- 188
doi: 10.1007/s12205-012-1445-4
|
33 |
MJÖRNELL K N. A model on self-desiccation in high- performance concrete [C]// Proceedings of an International Research Seminar on Self-desiccation and its Importance in Concrete Technology. Lund: [s. n.]. 1997: 141-157.
|
34 |
BAROGHEL-BOUNY V, MAINGUY M, LASSABA- TERE T, et al Characterization and identification of equilibrium and transfer moisture properties for ordinary and high-performance cementitious materials[J]. Cement and Concrete Research, 1999, 29 (8): 1225- 1238
doi: 10.1016/S0008-8846(99)00102-7
|
35 |
XI Y P, BAZANT Z P, JENNINGS H M Moisture diffusion in cementitious materials adsorption isotherms[J]. Advanced Cement Based Materials, 1994, 1 (6): 248- 257
doi: 10.1016/1065-7355(94)90033-7
|
36 |
BENTZ D P Transient plane source measurements of the thermal properties of hydrating cement pastes[J]. Materials and Structures, 2007, 40: 1073- 1080
|
37 |
KOVLER K, ZHUTOVSKY S Overview and future trends of shrinkage research[J]. Materials and Structures, 2006, 39 (9): 827- 847
doi: 10.1617/s11527-006-9114-z
|
38 |
赵立晓, 王鹏刚, 王兰芹, 等 混凝土内部温湿度响应参数分析: 水分扩散系数与导热系数[J]. 材料导报, 2021, 35 (12): 12075- 12080 ZHAO Li-xiao, WANG Peng-gang, WANG Lan-qin, et al Analysis of concrete internal temperature and humidity response parameters: water diffusion coefficient and thermal conductivity coefficient[J]. Materials Reports, 2021, 35 (12): 12075- 12080
doi: 10.11896/cldb.20040215
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|