交通工程 |
|
|
|
|
高速公路行车风险路侧感知系统的设备优化布设 |
李立1( ),平振东2,徐志刚3,*( ),汪贵平1 |
1. 长安大学 电子与控制工程学院,陕西 西安 710064 2. 山东省交通规划设计院集团有限公司,山东 济南 250101 3. 长安大学 信息工程学院,陕西 西安 710064 |
|
Devices’ optimal deployment of roadside sensing system for expressway driving risk |
Li LI1( ),Zhen-dong PING2,Zhi-gang XU3,*( ),Gui-ping WANG1 |
1. School of Electronics and Control Engineering, Chang’an University, Xi’an 710064, China 2. Shandong Provincial Communications Planning and Design Institute Group Limited Company, Jinan 250101, China 3. School of Information Engineering, Chang’an University, Xi’an 710064, China |
引用本文:
李立,平振东,徐志刚,汪贵平. 高速公路行车风险路侧感知系统的设备优化布设[J]. 浙江大学学报(工学版), 2023, 57(6): 1137-1146.
Li LI,Zhen-dong PING,Zhi-gang XU,Gui-ping WANG. Devices’ optimal deployment of roadside sensing system for expressway driving risk. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1137-1146.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.06.009
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I6/1137
|
1 |
中华人民共和国交通运输部. 公路工程适应自动驾驶附属设施总体技术规范(征求意见稿)[S]. 北京: [s.n.], 2020.
|
2 |
吴建波 延庆至崇礼高速公路雷达路况感知系统[J]. 中国交通信息化, 2021, (1): 105- 107 WU Jian-bo Yanqing-Chongli expressway radar traffic awareness system[J]. China ITS Journal, 2021, (1): 105- 107
doi: 10.13439/j.cnki.itsc.2021.01.009
|
3 |
LIU H X, DANCZYK A Optimal sensor locations for freeway bottleneck identification[J]. Computer-Aided Civil and Infrastructure Engineering, 2009, 24 (8): 535- 550
doi: 10.1111/j.1467-8667.2009.00614.x
|
4 |
CONTRERAS S, KACHROO P, AGARWAL S Observability and sensor placement problem on highway segments: a traffic dynamics-based approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17 (3): 848- 858
doi: 10.1109/TITS.2015.2491282
|
5 |
邵长桥, 李敏 基于流量与占有率模型的交通事件检测器布设研究[J]. 北京工业大学学报, 2016, 42 (9): 1392- 1397 SHAO Chang-qiao, LI Min Study of Layout of incident detectors based on traffic flow and occupancy models[J]. Journal of Beijing University of Technology, 2016, 42 (9): 1392- 1397
|
6 |
张雯靓. 基于多源信息的高速公路交通事件检测方法研究[D]. 南京: 东南大学, 2018. ZHANG Wen-liang. Research on freeway traffic incident detection method based-on multi-source information [D]. Nanjing: Southeast University, 2018.
|
7 |
GENTILI M, MIRCHANDANI P B Review of optimal sensor location models for travel time estimation[J]. Transportation Research Part C: Emerging Technologies, 2018, 90: 74- 96
doi: 10.1016/j.trc.2018.01.021
|
8 |
CHEN X, LI Z, YANG Y, et al High-resolution vehicle trajectory extraction and denoising from aerial videos[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22 (5): 3190- 3202
doi: 10.1109/TITS.2020.3003782
|
9 |
IVANCHEV J, AYDT H, KNOLL A Information maximizing optimal sensor placement robust against variations of traffic demand based on importance of nodes[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17 (3): 714- 725
doi: 10.1109/TITS.2015.2481928
|
10 |
朱西产, 魏昊舟, 马志雄 基于自然驾驶数据的跟车场景潜在风险评估[J]. 中国公路学报, 2020, 33 (4): 169- 181 ZHU Xi-chan, WEI Hao-zhou, MA Zhi-xiong Assessment of the potential risk in car-following scenario based on naturalistic driving data[J]. China Journal of Highway and Transport, 2020, 33 (4): 169- 181
doi: 10.3969/j.issn.1001-7372.2020.04.017
|
11 |
American Association of State Highway and Transportation Officials. Highway safety manual [M]. Washington, DC: AASHTO, 2010: G-14.
|
12 |
MAHMUD S, FERREIRA L, HOQUE S, et al Application of proximal surrogate indicators for safety evaluation: a review of recent developments and research needs[J]. IATSS Research, 2017, 41 (4): 153- 163
doi: 10.1016/j.iatssr.2017.02.001
|
13 |
WANG C, STAMATIADIS N Surrogate safety measure for simulation-based conflict study[J]. Transportation Research Record, 2013, (2386): 72- 80
|
14 |
ISMAIL K, SAYED T, SAUNIER N Methodologies for aggregating indicators of traffic conflict[J]. Transportation Research Record, 2011, (2237): 10- 19
|
15 |
PINNOW J, MASOUD M, ELHENAWY M, et al A review of naturalistic driving study surrogates and surrogate indicator viability within the context of different road geometries[J]. Accident Analysis and Prevention, 2021, 157: 106185
doi: 10.1016/j.aap.2021.106185
|
16 |
RAHMAN M S, ABDEL-ATY M Longitudinal safety evaluation of connected vehicles’ platooning on expressways[J]. Accident Analysis and Prevention, 2018, 117: 381- 391
doi: 10.1016/j.aap.2017.12.012
|
17 |
SINHA A, CHAND S, WIJAYARATNA K P, et al Comprehensive safety assessment in mixed fleets with connected and automated vehicles: a crash severity and rate evaluation of conventional vehicles[J]. Accident Analysis and Prevention, 2020, 142: 105567
doi: 10.1016/j.aap.2020.105567
|
18 |
RESHEF D N, RESHEF Y A, FINUCANE H K, et al Detecting novel associations in large data sets[J]. Science, 2011, 334 (6062): 1518- 1524
doi: 10.1126/science.1205438
|
19 |
CHEN Y, MAO J, HUANG H, et al. Analysis of different graph convolutional network prediction models with spatial dependence evaluation [C]// 2021 IEEE International Intelligent Transportation Systems Conference (ITSC). Indianapolis: IEEE, 2021: 1780-1785.
|
20 |
蔡晓禹, 雷财林, 彭博, 等 基于驾驶行为和信息熵的道路交通安全风险预估[J]. 中国公路学报, 2020, 33 (6): 190- 201 CAI Xiao-yu, LEI Cai-lin, PENG Bo, et al Road traffic safety risk estimation based on driving behavior and information entropy[J]. China Journal of Highway and Transport, 2020, 33 (6): 190- 201
doi: 10.3969/j.issn.1001-7372.2020.06.018
|
21 |
牛世峰, 李贵强, 张士伟 卫星定位数据驱动的营运车辆驾驶人驾驶风险评估模型[J]. 中国公路学报, 2020, 33 (6): 202- 211 NIU Shi-feng, LI Gui-qiang, ZHANG Shi-wei Driving risk assessment model of commercial drivers based on satellite-positioning data[J]. China Journal of Highway and Transport, 2020, 33 (6): 202- 211
doi: 10.19721/j.cnki.1001-7372.2020.06.019
|
22 |
REVELLE C S, EISELT H A Location analysis: a synthesis and survey[J]. European Journal of Operational Research, 2005, 165 (1): 1- 19
doi: 10.1016/j.ejor.2003.11.032
|
23 |
Federal Highway Administration. NGSIM-next generation simulation [EB/OL]. (2020-11-02) [2023-06-03]. https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm.
|
24 |
PUNZO V, BORZACCHIELLO M T, CIUFFO B. Estimation of vehicle trajectories from observed discrete positions and next-generation simulation program (NGSIM) data [C]// Transportation Research Board Meeting. Washington, DC: [s.n.], 2009: 09-3831.
|
25 |
SAVITZKY A, GOLAY M J E Smoothing and differentiation of data by simplified least squares procedures[J]. Analytical Chemistry, 1964, 36 (8): 1627- 1639
doi: 10.1021/ac60214a047
|
26 |
赵玲, 龚加兴, 黄大荣, 等 基于 Fisher Score 与最大信息系数的齿轮箱故障特征选择方法[J]. 控制与决策, 2021, 36 (9): 2234- 2240 ZHAO Ling, GONG Jia-xing, HUANG Da-rong, et al Fault feature selection method of gearbox based on Fisher Score and maximum information coefficient[J]. Control and Decision, 2021, 36 (9): 2234- 2240
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|