自动化技术、信息工程 |
|
|
|
|
基于相位融合特征和残差网络的调制智能识别 |
罗群平( ),赵民建,赵明敏*( ),苏智臻 |
浙江大学 信息与电子工程学院,浙江 杭州 310013 |
|
Modulation intelligent recognition based on phase fusion feature and residual network |
Qun-ping LUO( ),Min-jian ZHAO,Ming-min ZHAO*( ),Zhi-zhen SU |
College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310013, China |
引用本文:
罗群平,赵民建,赵明敏,苏智臻. 基于相位融合特征和残差网络的调制智能识别[J]. 浙江大学学报(工学版), 2022, 56(10): 1987-1994.
Qun-ping LUO,Min-jian ZHAO,Ming-min ZHAO,Zhi-zhen SU. Modulation intelligent recognition based on phase fusion feature and residual network. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 1987-1994.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.10.010
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I10/1987
|
1 |
DOBRE O A, ABDI A, BAR-NESS Y, et al Survey of automatic modulation classification techniques: classical approaches and new trends[J]. IET Communications, 2007, 1 (2): 137- 156
doi: 10.1049/iet-com:20050176
|
2 |
JDID B, HASSAN K, DAYOUB I, et al Machine learning based automatic modulation recognition for wireless communications: a comprehensive survey[J]. IEEE Access, 2021, 9 (1): 57851- 57873
|
3 |
李晨, 杨俊安, 刘辉 基于信息熵和GA-ELM的调制识别算法[J]. 系统工程与电子技术, 2020, 42 (1): 223- 229 LI Chen, YANG Jun-an, LIU Hui Modulation recognition algorithm based on information entropy and GA-ELM[J]. Systems Engineering and Electronics, 2020, 42 (1): 223- 229
doi: 10.3969/j.issn.1001-506X.2020.01.30
|
4 |
ZENG Y, ZHANG M, HAN F, et al Spectrum analysis and convolutional neural network for automatic modulation recognition[J]. IEEE Wireless Communications Letters, 2019, 8 (3): 929- 932
doi: 10.1109/LWC.2019.2900247
|
5 |
ALI A K, ERELEBI E Automatic modulation recognition of DVB-S2X standard-specific with an APSK-based neural network classifier[J]. Measurement, 2019, 151: 107257
|
6 |
XIE W, HU S, YU C, et al Deep learning in digital modulation recognition using high order cumulants[J]. IEEE Access, 2019, 7: 63760- 63766
doi: 10.1109/ACCESS.2019.2916833
|
7 |
WANG Y, LIU M, YANG J, et al Data-driven deep learning for automatic modulation recognition in cognitive radios[J]. IEEE Transactions on Vehicular Technology, 2019, 68 (4): 4074- 4077
doi: 10.1109/TVT.2019.2900460
|
8 |
李润东, 李立忠, 李少谦, 等 基于稀疏滤波神经网络的智能调制识别[J]. 电子科技大学学报, 2019, 48 (2): 161- 167 LI Run-dong, LI Li-zhong, LI Shao-qian, et al Intelligent modulation recognition based on sparse filtering neural network[J]. Journal of University of Electronic Science and Technology of China, 2019, 48 (2): 161- 167
doi: 10.3969/j.issn.1001-0548.2019.02.001
|
9 |
DENG L, YU D Deep learning: methods and applications[J]. Foundations and Trends in Signal Processing, 2014, 7 (3): 197- 387
|
10 |
MASI I, CHANG F J, CHOI J, et al Learning pose-aware models for pose-invariant face recognition in the wild[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 41 (2): 379- 393
|
11 |
CHOWDHURY A, ROSS A Fusing MFCC and LPC features using 1D triplet CNN for speaker recognition in severely degraded audio signals[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 1616- 1629
doi: 10.1109/TIFS.2019.2941773
|
12 |
HUANG C, LI Y, CHEN C L, et al Deep imbalanced learning for face recognition and attribute prediction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42 (11): 2781- 2794
doi: 10.1109/TPAMI.2019.2914680
|
13 |
HUANG S, JIANG Y, GAO Y, et al Automatic modulation classification using contrastive fully convolutional network[J]. IEEE Wireless Communication Letters, 2019, 8 (4): 1044- 1047
doi: 10.1109/LWC.2019.2904956
|
14 |
TENG C F, CHOU C Y, CHEN C H, et al Accumulated polar feature-based deep learning for efficient and lightweight automatic modulation classification with channel compensation mechanism[J]. IEEE Transactions on Vehicular Technology, 2020, 69 (12): 15472- 15485
doi: 10.1109/TVT.2020.3041843
|
15 |
HUYNH-THE T, HUA C H, PHAM Q V, et al Mcnet: an efficient CNN architecture for robust automatic modulation classification[J]. IEEE Communications Letters, 2020, 244 (4): 811- 815
|
16 |
O'SHEA T J, ROY T, CLANCY T C Over-the-air deep learning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12 (1): 168- 179
doi: 10.1109/JSTSP.2018.2797022
|
17 |
ANEDDA M, MELONI A, MURRONI M 64-APSK constellation and mapping optimization for satellite broadcasting using genetic algorithms[J]. IEEE Transactions on Broadcasting, 2015, 62 (1): 1- 9
|
18 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
|
19 |
MA J, LIN S C, GAO H, et al. Automatic modulation classification under non-Gaussian noise: a deep residual learning approach [C]// 2019 IEEE International Conference on Communications. Shanghai: IEEE, 2019: 1-6.
|
20 |
MORELLI M, ANDREA A N D, MENGALI U Feedforward Ml-based timing estimation with PSK signals[J]. IEEE Communications Letters, 1997, 1 (3): 80- 82
doi: 10.1109/4234.585803
|
21 |
ERUP L, GARDNER F M Interpolation in digital modems. II. implementation and performance[J]. IEEE Transactions on Communications, 1993, 41 (6): 998- 1008
doi: 10.1109/26.231921
|
22 |
PENG S L, JIANG H Y, WANG H X, et al Modulation classification based on signal constellation diagrams and deep learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30 (3): 718- 727
doi: 10.1109/TNNLS.2018.2850703
|
23 |
ASLAM M W, ZHU Z, NANDI A K Automatic modulation classification using combination of genetic programming and KNN[J]. IEEE Transactions on Wireless Communications, 2012, 11 (8): 2742- 2750
|
24 |
KRZYSTON J, BHATTACHARJEA R, STARK A. Complex-valued convolutions for modulation recognition using deep learning [C]// 2020 IEEE International Conference on Communications Workshops. Dublin: IEEE, 2020: 1-6.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|