浙江大学学报(工学版)  2020, Vol. 54 Issue (7): 1341-1346    DOI: 10.3785/j.issn.1008-973X.2020.07.012
 机械与能源工程

1. 浙江工业大学 机械工程学院，浙江 杭州 310014
2. 浙江工业大学之江学院 机械工程学院，浙江 绍兴 312030
Design and performance analysis of variable stiffness multi-stable composite laminate structure
Zheng ZHANG1(),Hao ZHANG1,Hao CHAI2,Hua-ping WU1,Shao-fei JIANG1
1. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
2. College of Mechanical Engineering, Zhijiang College of Zhejiang University of Technology, Shaoxing 312030, China
 全文: PDF(972 KB)   HTML

Abstract:

Two variable stiffness multi-stable composite laminate structures were designed by analyzing the relationship between the theoretical model of regional fiber angle change and the stiffness change of composite structures. The variable stiffness multi-stable composite structure was modeled, and the stable configuration of the multi-stable composite structures with variable stiffness was obtained by solving different equilibrium equations with Matlab. The experimental specimens were prepared to measure the mechanical properties with different stable transformation. The cooling process were simulated by finite element software Abaqus, and the numerical results of equilibrium stable configuration were obtained. The stable configuration, the stable transformation maximum load and the load-displacement curvatures were analyzed by combining with the theoretical, numerical and experimental results.

Key words: variable stiffness    multi-stable composite structure    classical laminate theory    finite element analysis

 CLC: TB 332

 服务 把本文推荐给朋友 加入引用管理器 E-mail Alert 作者相关文章 张征 张豪 柴灏 吴化平 姜少飞

#### 引用本文:

Zheng ZHANG,Hao ZHANG,Hao CHAI,Hua-ping WU,Shao-fei JIANG. Design and performance analysis of variable stiffness multi-stable composite laminate structure. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1341-1346.

#### 链接本文:

 表 1  单层板的材料参数[18] 图 1  变刚度多稳态复合材料结构纤维方向示意图 图 2  恒温恒压热压机 图 3  试件1稳态示意图 图 4  试件2稳态示意图 图 5  稳态转变实验 图 6  压头与夹具 图 7  2种试件的稳态转变载荷-位移曲线 图 8  试件1第2稳态构型理论结果与有限元数值解的对比 图 9  试件1两个稳态构型有限元与实验试件对比 图 10  试件2两个稳态构型有限元与实验试件对比 图 11  试件2载荷-位移实验与有限元模拟对比
 1 KUDER I K, ARRIETA A F, RIST M, et al Aeroelastic response of a selectively compliant morphing aerofoil featuring integrated variable stiffness bi-stable laminates[J]. Journal of Intelligent Material Systems and Structures, 2016, 27 (14): 1949- 1966 doi: 10.1177/1045389X15620038 2 SOUSA C S, CAMANHO P P, SULEMAN A Analysis of multistable variable stiffness composite plates[J]. Composite Structures, 2013, 98 (3): 34- 46 3 WALDHART C. Analysis of tow-placed, variable-stiffness laminates [D]. Virginia: Virginia Tech, 1996. 4 GURDAL Z, OLMEDO R In-plane response of laminates with spatially varying fiber orientations-variable stiffness concept[J]. American Institute of Aeronautics and Astronautics Journal, 1993, 31 (4): 751- 758 doi: 10.2514/3.11613 5 GURDAL Z, TATTING B F, WU C K Variable stiffness composite panels: effects of stiffness variation on the in-plane and buckling response[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39 (5): 911- 922 doi: 10.1016/j.compositesa.2007.11.015 6 BLOM A W, STICKLER P B, GURDAL Z Optimization of a composite cylinder under bending by tailoring stiffness properties in circumferential direction[J]. Composites Part B: Engineering, 2010, 41 (2): 157- 165 doi: 10.1016/j.compositesb.2009.10.004 7 邵忠喜. 纤维铺放装置及其铺放关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.SHAO Zhong-xi. Research on fiber laying device and its key technologies [D]. Harbin: Harbin University of Technology, 2010. 8 LE H M, CAO L, DO T N, et al Design and modelling of a variable stiffness manipulator for surgical robots[J]. Mechatronics, 2018, 53: 109- 123 doi: 10.1016/j.mechatronics.2018.05.012 9 PEETERS D M J, HESSE S, ABDALLA M M Stacking sequence optimization of variable stiffness laminates with manufacturing constraints[J]. Composite Structures, 2015, 125: 596- 604 doi: 10.1016/j.compstruct.2015.02.044 10 NIK M A, FAYAZBAKHSH K, PASINI D, et al Optimization of variable stiffness composites with embedded defects induced by automated fiber placement[J]. Composite Structures, 2014, 107: 160- 166 doi: 10.1016/j.compstruct.2013.07.059 11 KUDER I K, ARRIETA A F, ERMANNI P Design space of embeddable variable stiffness bi-stable elements for morphing applications[J]. Composite Structures, 2015, 122: 445- 455 doi: 10.1016/j.compstruct.2014.11.061 12 KHANI A, IJSSELMUIDEN S T, ABDALLA M M, et al Design of variable stiffness panels for maximum strength using lamination parameters[J]. Composites Part B: Engineering, 2011, 42 (3): 546- 552 doi: 10.1016/j.compositesb.2010.11.005 13 孔斌, 顾杰斐, 陈普会, 等 变刚度复合材料结构的设计、制造与分析[J]. 复合材料学报, 2017, 34 (10): 2121- 2133KONG Bin, GU Jie-fei, CHEN Pu-hui, et al Design, manufacture and analysis of variable stiffness composite structures[J]. Journal of Composite Materials, 2017, 34 (10): 2121- 2133 14 DURAN A V, FASANELLA N A, SUNDARARAGHAVAN V, et al Thermal buckling of composite plates with spatial varying fiber orientations[J]. Composite Structures, 2015, 124: 228- 235 doi: 10.1016/j.compstruct.2014.12.065 15 RAHMAN T, IJSSELMUIDEN S T, ABDALLA M M, et al Postbuckling analysis of variable stiffness composite plates using a finite element-based perturbation method[J]. International Journal of Structural Stability and Dynamics, 2011, 11 (4): 735- 753 doi: 10.1142/S0219455411004324 16 ARRIETA A F, KUDER I K, RIST M, et al Passive load alleviation aerofoil concept with variable stiffness multi-stable composites[J]. Composite Structures, 2014, 116: 235- 242 doi: 10.1016/j.compstruct.2014.05.016 17 COBURN B H, WU Z, WEAVER P M Buckling analysis of stiffened variable angle tow panels[J]. Composite Structures, 2014, 111 (11): 259- 270 18 XIONG C, LEI Y, YAO X Dynamic experimental study of deployable composite structure[J]. Applied Composite Materials, 2011, 18 (5): 439- 448 doi: 10.1007/s10443-010-9174-7 19 ZHANG Z, WU H, YE G, et al Experimental study on bistable behaviour of anti-symmetric laminated cylindrical shells in thermal environments[J]. Composite Structures, 2016, 144: 24- 32 doi: 10.1016/j.compstruct.2016.02.062 20 ZHANG Z, WU H, YE G, et al Systematic experimental and numerical study of bistable snap processes for anti-symmetric cylindrical shells[J]. Composite Structures, 2014, 112: 368- 377 doi: 10.1016/j.compstruct.2014.02.030 21 LEI Y M, YAO X F Experimental study of bistable behaviors of deployable composite structure[J]. Journal of Reinforced Plastics and Composites, 2010, 29 (6): 865- 873 doi: 10.1177/0731684408100738 22 刘东新, 刘伟. 复合材料力学基础[M]. 西安: 西北工业大学出版社, 2010. 23 SCHLECHT M, SCHULTE K Advanced calculation of the room-temperature shapes of unsymmetric laminates[J]. Journal of Composite Materials, 1999, 33 (16): 1472- 1490 doi: 10.1177/002199839903301601 24 ARRIETA A F, KUDER I K, WAEBER T, et al Variable stiffness characteristics of embeddable multi-stable composites[J]. Composites Science and Technology, 2014, 97: 12- 18 doi: 10.1016/j.compscitech.2014.03.017 25 HALDAR A, REINOSO J, JANSEN E, et al Thermally induced multistable configurations of variable stiffness composite plates: Semi-analytical and finite element investigation[J]. Composite Structures, 2018, 183: 161- 175 doi: 10.1016/j.compstruct.2017.02.014
 [1] 沈国辉,包玉南,郭勇,宋刚,王轶文. 输电线顺线路方向风荷载及分配模式[J]. 浙江大学学报(工学版), 2020, 54(9): 1658-1665. [2] 楼恺俊,俞峰,夏唐代,马健. 黏土中地下连续墙支护结构的稳定性分析[J]. 浙江大学学报(工学版), 2020, 54(9): 1697-1705. [3] 陈勇,李泳全,谢重磊,钱匡亮,张叶胜,程鹏允,叶轩佐. 钢管束剪力墙约束下砌体结构推覆试验研究[J]. 浙江大学学报(工学版), 2020, 54(3): 499-511. [4] 王立国,邵旭东,曹君辉,陈玉宝,何广,王洋. 基于超短栓钉的钢-超薄UHPC组合桥面性能[J]. 浙江大学学报(工学版), 2020, 54(10): 2027-2037. [5] 童水光,苗嘉智,童哲铭,何顺,相曙锋,帅向辉. 内燃叉车车架静动特性有限元分析及优化[J]. 浙江大学学报(工学版), 2019, 53(9): 1637-1646. [6] 何绍衡,夏唐代,李连祥,于丙琪,刘泽勇. 地下水渗流对悬挂式止水帷幕基坑变形影响[J]. 浙江大学学报(工学版), 2019, 53(4): 713-723. [7] 代文强,郑旭,郝志勇,邱毅. 采用能量有限元分析的高速列车车内噪声预测[J]. 浙江大学学报(工学版), 2019, 53(12): 2396-2403. [8] 庄妍, 程欣婷, 肖衡林, 刘奂孜, 周倍合, 李嘉俊. 桩承式路堤中加筋褥垫层的工作性状[J]. 浙江大学学报(工学版), 2018, 52(12): 2279-2284. [9] 夏永强, 肖南. T形钢连接梁柱半刚性节点初始转动刚度计算公式[J]. 浙江大学学报(工学版), 2018, 52(10): 1935-1942. [10] 王幸, 徐武, 张晓晶, 张丽娜, 胡本润. TC4板冷挤压强化寿命预测与试验验证[J]. 浙江大学学报(工学版), 2017, 51(8): 1610-1618. [11] 籍庆辉, 朱平, 卢家海. 层合板分层失效数值模拟与参数识别[J]. 浙江大学学报(工学版), 2017, 51(5): 954-960. [12] 江南, 陈民铀, 徐盛友, 赖伟, 高兵. 计及裂纹损伤的IGBT模块热疲劳失效分析[J]. 浙江大学学报(工学版), 2017, 51(4): 825-833. [13] 陈伟刚,邓华, 白光波, 董石麟, 朱忠义. 平板型铝合金格栅结构支座节点的承载性能[J]. 浙江大学学报(工学版), 2016, 50(5): 831-840. [14] 毕运波,李夏,严伟苗,沈立恒, 朱宇,方伟. 面向螺旋铣制孔过程的压脚压紧力优化[J]. 浙江大学学报(工学版), 2016, 50(1): 102-110. [15] 王佼姣, 石永久, 王元清, 潘鹏, 牧野俊雄, 齐雪. 低屈服点钢材LYP100循环加载试验[J]. 浙江大学学报(工学版), 2015, 49(8): 1401-1409.