Please wait a minute...
浙江大学学报(工学版)
机械工程     
大温差工况下模具发汗水膜冷却机理
段俊杰, 伊国栋, 张树有
浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027
Cooling mechanism of condensed water film on surface of mould cavity under large temperature difference
DUAN Jun-jie, YI Guo-dong, ZHANG Shu-you
State Key Lab of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
 全文: PDF(2443 KB)   HTML
摘要:

 针对传统的基于模具-制品双层模型冷却分析方法未考虑发汗水膜对冷却过程的影响、难以准确描述成型冷却温度演变过程的问题,提出大温差工况下模具-水膜-制品三层复合模型(MWP模型).采用热力学第1类和第3类边界条件进行相邻层的非稳态导热耦合计算,利用MWP模型对薄壁中空吹塑制品的冷却过程进行分析,通过对比发汗水膜对制品冷却时间及冷却均匀性的影响,结果表明:发汗水膜能够缩短薄壁中空吹塑制品冷却时间并提高其冷却均匀性.

Abstract:

The traditional method of cooling analysis based on the mold-product two-layer model didn’t consider the impact of condensed water film on the cooling process, which was difficult to describe the evolution process of temperature in the cooling stage accurately. Aiming at this problem, the three-layer composite model of mould-water film-product (MWP model) under large temperature difference was established in this paper. Dirichlet boundary condition and Neumann boundary condition of Thermodynamics were adopted to improve the coupling calculation of adjacent layers of transient heat conduction, and the three-layer model was used to analyze the cooling stage of thin-walled hollow blow molding products. It is concluded that condensed water film can shorten the cooling time of thin-walled hollow blow molding products and improve the uniformity of cooling by comparing the effects of condensed water film about cooling time and cooling uniformity of products.

出版日期: 2015-08-01
:     
基金资助:

国家自然科学基金资助项目(51375438); 国家“863”高技术研究发展计划资助项目 (2013AA041304); 国家“十一五”科技支撑计划资助项目(2013BAF02B00).

通讯作者: 伊国栋,男,副教授     E-mail: ygd@zju.edu.cn
作者简介: 段俊杰 (1990—), 女, 硕士, 从事产品数字化设计制造相关的研究. E-mail: duanjunjie06@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

段俊杰, 伊国栋, 张树有. 大温差工况下模具发汗水膜冷却机理[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.08.011.

DUAN Jun-jie, YI Guo-dong, ZHANG Shu-you. Cooling mechanism of condensed water film on surface of mould cavity under large temperature difference. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.08.011.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.08.011        http://www.zjujournals.com/eng/CN/Y2015/V49/I8/1478

[1] 黄汉雄.塑料吹塑技术[M]. 北京: 化学工业出版社, 1996: 182.
[2] SMITH A G, WROBAL L C, MCCALLA B A, et al. A computational model for the cooling phase of injection moulding [J]. Journal of Materials Processing Technology, 2008, I95: 305-313.
[3] HEGGS P J, HOUGHTON J M, INGHANM D B. Application of the enthalpy method to the blow molding of polymers [J]. Plastics rubber and Composites processing and applications, 1995, 23(4): 203-210.
[4] LAROCHE D, KABANEMI K K, PECORA L, et al. Integrated numerical modeling of the blow molding process [J]. Polymer Engineering and Science, 1999, 39(7): 1223-1233.
[5] HAMDY H, NICOLAS R, CYRIL P, et al. Modeling the effect of cooling system on the shrinkage and temperature of the polymer by injection molding [J]. Applied Thermal Engineering, 2010, 30(13): 1547-1557.
[6] HAMDY H, NICOLAS R, CEDRIC L, et al. Effect of cooling system on the polymer temperature and solidification during injection molding [J]. Applied Thermal Engineering. 2009, 29(8/9): 1786-1791.
[7] KOVACS J G, SIKLO B. Investigation of cooling effect at corners in injection molding [J]. International Communications in Heat and Mass Transfer, 2011, 38(10): 1330-1334.
[8] HUANG H X, LI Y Z, HUANG Y F. Part cooling in blow molding: finite element simulation [J]. ANTEC, 2004, 28-30.
[9] 赵朋,傅建中,李阳,等.基于代理模型的注射参数迭代优化方法 [J]. 浙江大学学报:工学版, 2011, 45(2): 197-200.
ZHAO Peng,FU Jian-zhong,LI Yang.Iterative optimization method for injection parameters based on surrogate model [J]. Journal of Zhejiang University: Engineering Science, 2011, 45(2): 197-200.
[10] DAVER F, DEMIREL B. A simulation study of the effect of preform cooling time in injection stretch blow molding [J]. Journal of Materials Processing Technology, 2012, 212(11) : 2400-2405.
[11] 石宪章,申长雨,赵振峰.注塑冷却分析模内复膜数学模型建模 [J]. 化工学报, 2006, 57(1): 175-179.
SHI Xian-zhang, SHEN Chang-yu, ZHAO Zhen-feng.Mathematical modeling of in-mold labeling for cooling analysis in injection molding[J].Journal of Chemical Industry and Engineering, 2006, 57(1): 175-179.
[12] EGLE W, 刘素范.如何避免注塑及吹塑模具的发汗现象 [J].国外塑料,1987, 15(1): 42-44.
EGLE W, LIU Su-fan. Avoiding method of sweating phenomenon in injection and blow mold [J]. World Plastics, 1987, 15(1): 42-44.
[13] 刘天庆,穆春丰,夏松柏,等.滴状冷凝初始液滴的形成机理 [J]. 化工学报,2007, 58(4): 822-828.
LIU Tian-qing, MU Chun-feng, XIA Song-bai, et al. Mechanism of initial droplet formation in dropwise condensation[J].Journal of Chemical Industry and Engineering, 2007, 58(4): 822-828.
[14] 闫维平,叶学民,李洪涛.液体薄膜流的流动和传热特性 [J].华北电力大学学报, 2005, 32(1): 59-65.
YAN Wei-ping, YE Xue-min, LI Hong-tao.Hydrodynamis and heat transfer of liquid thin films [J].Journal of North China Electric Power University, 2005, 32 (1): 59-65.
[15] ECCLES C R H, Ellis D I, HEGGS P J, et al. Transient heat transfer model of blow molding [J]. Plastics and Rubber Processing and Application, 1990, 14(4): 219222.
[16] 刘佩茹.化工过程与设备[M].北京:中国轻工业出版社, 1994.
[17] 段满清.直接蒸发冷却的数值模拟及应用研究[D].湖南:湖南科技大学,2008: 24-31.
DUAN Man-qing. Numerieal simulation and applications of direct evaporative cooling system [D]. Hunan: Hunan University of Science and Technology, 2008: 24-31.
[18] 陶国源.塑料吹塑成型[M].上海:上海科学技术文献出版社, 1979.
[19] 刘国勇,朱冬梅,张少军,等.大口径无缝钢管淬火冷却均匀性影响因素[J]. 北京科技大学学报, 2011, 33(2): 232-236.
LIU Guo-yong, ZHU Dong-mei, ZHANG Shao-jun, et al. Influencing factors on cooling uniformity of large caliber seamless steel pipes during quenching [J].Journal of University of Science and Technology Beijing, 2011, 33(2): 232-236.

[1] 董凯, 赖俊英, 钱晓倩, 詹树林, 阮方. 夏热冬冷地区居住建筑水平式外遮阳节能效果[J]. 浙江大学学报(工学版), 2016, 50(8): 1431-1437.
[2] 李佳琦, 范利武, 俞自涛. 超亲水表面在淬火冷却过程中的沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(8): 1493-1498.
[3] 江衍铭, 张建全, 明焱. 集合神经网络的洪水预报[J]. 浙江大学学报(工学版), 2016, 50(8): 1471-1478.
[4] 钟崴, 彭梁, 周永刚, 徐剑, 从飞云. 基于小波包分析和支持向量机的锅炉结渣诊断[J]. 浙江大学学报(工学版), 2016, 50(8): 1499-1506.
[5] 夏玉峰, 任莉, 叶彩红, 王力. 基于RSM的立柱加强板定位布局多目标优化[J]. 浙江大学学报(工学版), 2016, 50(8): 1600-1607.
[6] 李林玉, 吴张华, 余国瑶, 戴巍, 罗二仓. 直线压缩机电声转换特性的实验[J]. 浙江大学学报(工学版), 2016, 50(8): 1529-1536.
[7] 曲巍崴, 唐伟, 毕运波, 李少波, 罗水均. 避免强迫装配和提升效率的预连接工艺规划[J]. 浙江大学学报(工学版), 2016, 50(8): 1561-1569.
[8] 胡小东, 顾临怡, 张范蒙. 应用于数字变量马达的高速开关阀[J]. 浙江大学学报(工学版), 2016, 50(8): 1551-1560.
[9] 杨姝, 刘国平, 亓昌, 王大志. 金属空心球梯度泡沫结构抗冲击特性仿真与优化[J]. 浙江大学学报(工学版), 2016, 50(8): 1593-1599.
[10] 杨章, 童根树, 张磊. 对称布置2根单侧加劲肋的有效刚度[J]. 浙江大学学报(工学版), 2016, 50(8): 1446-1455.
[11] 蒋翔, 童根树, 张磊. 耐火钢-混凝土组合梁抗火性能试验[J]. 浙江大学学报(工学版), 2016, 50(8): 1463-1470.
[12] 单华峰, 夏唐代, 俞峰, 胡军华, 潘金龙. 地下增层开挖托换桩的屈曲稳定临界荷载分析[J]. 浙江大学学报(工学版), 2016, 50(8): 1425-1430.
[13] 辜天来,张帅,郑耀. 咽式进气道/等直隔离段的反压特性[J]. 浙江大学学报(工学版), 2016, 50(7): 1418-1424.
[14] 程时伟, 陆煜华, 蔡红刚. 移动设备眼动跟踪技术[J]. 浙江大学学报(工学版), 2016, 50(6): 1160-1166.
[15] 郑成志, 高金良, 何文杰. 基于FastICA算法的物理漏损流量分析模型[J]. 浙江大学学报(工学版), 2016, 50(6): 1031-1039.