Please wait a minute...
浙江大学学报(工学版)
机械工程     
螺旋面磨料流光整加工仿真与试验
高航, 付有志, 王宣平, 彭灿
大连理工大学 精密与特种加工教育部重点实验室,辽宁 大连 116024
Simulations and experiments on finishing process of screw surface by using abrasive flow machining
GAO Hang,FU You zhi,WANG Xuan ping,PENG Can
Key Laboratory for Precision and Nontraditional Machining Technology of Ministry of Education,Dalian University of Technology, Dalian 116024, China
 全文: PDF(2745 KB)   HTML
摘要:

 针对难加工复杂螺旋面光整加工成本高及质量难保证等问题,提出基于磨料流加工技术的螺旋面光整加工方法. 通过建立有无螺旋引流段的“夹具螺杆”仿真模型,对比分析2种模型中螺旋面磨料介质流场分布规律,优选出适用于螺旋面均匀化光整加工的夹具结构,在此基础上开展挤压螺杆的磨料流加工与砂带磨削对比试验. 结果表明:磨料介质静压力沿流动方向逐渐减小,且等值线近似沿螺旋槽宽度方向分布;增加螺旋引流段后螺旋面进出口回流区被消除,提高流场均匀性;磨料流加工后螺旋表面粗糙度由105 μm降为045 μm,螺旋槽最小直径一致性好,且加工质量和效率优于人工砂带磨削.

Abstract:

Abrasive flow machining (AFM) was proposed to finish screw surface aiming at the problem of high capital cost and undefined surface quality on the finishing process of complex screw surface made of difficulttocut materials. The optimal fixture which is able to obtain uniform screw surface finish was selected based on the contrastive analyses of flow field distributions in two kinds of "fixturescrew" simulation models with and without helical guide blocks. On the basis, contrast tests were carried out to study the screw surface finish by using AFM and belt grinding process, and the research results show that the static pressure of abrasive media decreases along its flow direction, and the contour line of static pressure is along the width direction of screw surface; the backflow in the inlet/outlet regions is eliminated with helical guide blocks, namely, the uniformity of flow field is improved. After AFM process, the screw surface roughness value decreases from 10.5 μm to 0.45 μm, the minimum diameter of screw surface is basically constant, and the screw surface quality and processing efficiency by using AFM process are better than that of manual belt grinding.

出版日期: 2017-01-14
:     
基金资助:

 国家“973”重点基础研究发展计划资助项目(2011CB706806);国家自然科学基金资助项目(51475074).

作者简介: 高航(1962-), 男, 教授, 从事精密与超精密加工和复合材料加工的教学与科研等研究. ORCID: 0000000295607133. E-mail: gaohang@dlut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

高航, 付有志, 王宣平, 彭灿. 螺旋面磨料流光整加工仿真与试验[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008973X.2016.05.015.

GAO Hang,FU You zhi,WANG Xuan ping,PENG Can. Simulations and experiments on finishing process of screw surface by using abrasive flow machining. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008973X.2016.05.015.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008973X.2016.05.015        http://www.zjujournals.com/eng/CN/Y2016/V50/I5/920

[1] VERCRUYSSE J, BURGGRAEVE A, FONTEYNE M, et al. Impact of screw configuration on the particle size distribution of granules produced by twin screw granulation [J]. International journal of pharmaceutics, 2015, 479(1): 171-180.
[2] HUANG R, LI T, YU X, et al. An optimization of the starwheel profile in a single screw compressor [J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2014, 229(2):139-150.
[3] LAWAL A, KALYON D M. Nonisothermal extrusion flow of viscoplastic fluids with wall slip [J]. International Journal of Heat and Mass Transfer, 1997, 40(16): 3883-3897.
[4] 裴丽霞. 聚合物塑化混炼挤出机螺杆的设计改进[J]. 橡塑技术与装备, 2014, 40(4): 34-37.
PEI Lixia. Improvements of polymer plasticized compounding extruder screw design [J]. China Rubber/Plastics Technology and Equipment :Plastic edition, 2014, 40(4): 34-37.
[5] MUIZNIEKS G, GERINS E, OZOLINS J. Analysis of condition changes of rotor compressors contact surface[C]∥ Proceedings of the 7th International  Conference of DAAAM Baltic Industrial Engineering. Tallinn: DAAAM International, 2010:441-445.
[6] KATSUMI K, KAZUMASA K, HISASHI T. Gearcutting tool for screwcompressor rotors (builtup hob) [J]. JSME International Journal Series C Mechanical Systems Machine Elements and Manufacturing, 2001, 44(3): 802-807.
[7] 吴宝海, 张娟, 杨建华, 等. 螺杆压缩机转子成形砂轮刃形计算[J]. 机械工程学报, 2012, 48(19): 192-198.
WU Baohai ZHANGJuan YANG Jianhua, et al. Calculation method for edge shape of forming wheel for screw rotors machining [J]. Journal of Mechanical Engineering, 2012, 48(19): 192-198.
[8] STOSIC N. A geometric approach to calculating tool wear in screw rotor machining [J]. International Journal of Machine Tools and Manufacture, 2006, 46(15): 1961-1965.
[9] WEI J, ZHANG G. A precision grinding method for screw rotors using CBN grinding wheel[J]. The International Journal of Advanced Manufacturing Technology, 2010, 48(5/8): 495-503.
[10] 陈庆延. 螺旋曲面砂带抛光工艺方法及专用数控抛光机研究[D]. 沈阳: 沈阳工业大学, 2009.
CHEN Qingyan. The study of spiral surface belt polishing process method and special CNC polishing machine[D]. Shenyang: Shenyang University of Technology, 2009.
[11] JAIN V K, ADSUL S G. Experimental investigations into abrasive flow machining (AFM)[J]. International Journal of Machine Tools and Manufacture, 2000, 40(7): 1003-1021.
[12] KAR K K, RAVIKUMAR N L, TAILOR P B, et al. Performance evaluation and rheological characterization of newly developed butyl rubber based media for abrasive flow machining process[J]. Journal of materials processing technology, 2009, 209(4): 2212-2221.
[13] 汤勇, 周德明, 夏伟, 等. 磨料流加工壁画滑动特性的研究[J]. 华南理工大学学报: 自然科学版, 2001, 29(1): 34-37.
TANG Yong, ZHOU Deming, XIA Wei, et al. Some investigation on the characteristic of wall sliding in abrasive flow machinning [J]. Journal of South China University of Technology :Natural Science Edition, 2001, 29(1): 34-37.
[14] 计时鸣, 翁晓星, 谭大鹏. 基于水平集方法的软性磨粒两相流场特性分析[J]. 浙江大学学报: 工学版, 2012, 45(12): 2222-2228.
JI Shiming, WENG Xiaoxing, Tan Dapeng, et al. Analysis on characteristics of softness abrasive twophase flow field based on level set method [J]. Journal of Zhejiang University :Engineering Science, 2012, 45(12): 2222-2228.
[15] 李琛, 计时鸣, 谭大鹏, 等. 软性磨粒流加工特性及近壁区域微切削机理[J]. 机械工程学报, 2014, 50(9): 161-168.
LI Chen, JI Shiming, TAN Dapeng, et al. Study of near wall area microcutting mechanism and finishing characteristics for softness abrasive flow finishing[J]. Journal of Mechanical Engineering, 2014, 50(9): 161-168.
[16] WANG A C, CHEN K Y, CHENG K C, et al. Elucidating the Effects of Helical Passageways in Abrasive Flow Machining[J]. Advanced Materials Research, 2011, 264: 1862-1867.
[17] BOLOT R, PLANCHE M P, LIAO H, et al. A threedimensional model of the wirearc spray process and its experimental validation[J]. Journal of materials processing technology, 2008, 200(1): 94-105.
[18] ROCHA COSTA P A, ROCHA BARBOSA H H, CARNEIRO MOURA F O, et al. k–ω SST (shear stress transport) turbulence model calibration: A case study on a small scale horizontal axis wind turbine[J]. Energy, 2014, 65: 412-418.
[19] 计时鸣, 李琛, 谭大鹏, 等. 软性磨粒流加工方法及近壁区域特性[J]. 浙江大学学报 :工学版, 2012, 46(10): 1764-1772.
JI Shiming, LI Chen, TAN Dapeng, et al. Softness abrasive flow machining and characteristics of near wall area[J]. Journal of Zhejiang University :Engineering Science, 2012, 46(10): 1764-1772.

[1] 董凯, 赖俊英, 钱晓倩, 詹树林, 阮方. 夏热冬冷地区居住建筑水平式外遮阳节能效果[J]. 浙江大学学报(工学版), 2016, 50(8): 1431-1437.
[2] 李佳琦, 范利武, 俞自涛. 超亲水表面在淬火冷却过程中的沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(8): 1493-1498.
[3] 江衍铭, 张建全, 明焱. 集合神经网络的洪水预报[J]. 浙江大学学报(工学版), 2016, 50(8): 1471-1478.
[4] 钟崴, 彭梁, 周永刚, 徐剑, 从飞云. 基于小波包分析和支持向量机的锅炉结渣诊断[J]. 浙江大学学报(工学版), 2016, 50(8): 1499-1506.
[5] 夏玉峰, 任莉, 叶彩红, 王力. 基于RSM的立柱加强板定位布局多目标优化[J]. 浙江大学学报(工学版), 2016, 50(8): 1600-1607.
[6] 李林玉, 吴张华, 余国瑶, 戴巍, 罗二仓. 直线压缩机电声转换特性的实验[J]. 浙江大学学报(工学版), 2016, 50(8): 1529-1536.
[7] 曲巍崴, 唐伟, 毕运波, 李少波, 罗水均. 避免强迫装配和提升效率的预连接工艺规划[J]. 浙江大学学报(工学版), 2016, 50(8): 1561-1569.
[8] 胡小东, 顾临怡, 张范蒙. 应用于数字变量马达的高速开关阀[J]. 浙江大学学报(工学版), 2016, 50(8): 1551-1560.
[9] 杨姝, 刘国平, 亓昌, 王大志. 金属空心球梯度泡沫结构抗冲击特性仿真与优化[J]. 浙江大学学报(工学版), 2016, 50(8): 1593-1599.
[10] 杨章, 童根树, 张磊. 对称布置2根单侧加劲肋的有效刚度[J]. 浙江大学学报(工学版), 2016, 50(8): 1446-1455.
[11] 蒋翔, 童根树, 张磊. 耐火钢-混凝土组合梁抗火性能试验[J]. 浙江大学学报(工学版), 2016, 50(8): 1463-1470.
[12] 单华峰, 夏唐代, 俞峰, 胡军华, 潘金龙. 地下增层开挖托换桩的屈曲稳定临界荷载分析[J]. 浙江大学学报(工学版), 2016, 50(8): 1425-1430.
[13] 辜天来,张帅,郑耀. 咽式进气道/等直隔离段的反压特性[J]. 浙江大学学报(工学版), 2016, 50(7): 1418-1424.
[14] 程时伟, 陆煜华, 蔡红刚. 移动设备眼动跟踪技术[J]. 浙江大学学报(工学版), 2016, 50(6): 1160-1166.
[15] 郑成志, 高金良, 何文杰. 基于FastICA算法的物理漏损流量分析模型[J]. 浙江大学学报(工学版), 2016, 50(6): 1031-1039.