Please wait a minute...
浙江大学学报(工学版)  2026, Vol. 60 Issue (3): 556-564    DOI: 10.3785/j.issn.1008-973X.2026.03.011
计算机技术、控制工程     
像素标签化参数自适应航拍去雾算法
黄银清(),曾力*()
重庆交通大学 机电与车辆工程学院,重庆 400074
Pixel-labeling-based parameter-adaptive dehazing algorithm for aerial image
Yinqing HUANG(),Li ZENG*()
School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China
 全文: PDF(3894 KB)   HTML
摘要:

针对雾天航拍图像中常见的色偏、细节模糊和对比度低等问题,提出像素标签化参数自适应去雾算法. 分析图像降质的成因,将去雾问题转化为大气光值和透射率的像素标签估计任务,构建像素级标签分配模型. 基于图像亮度分布和像素相似性,利用加权图优化方法自适应调整标签,提升大气光值的估计精度. 通过多标签分类方法优化透射率,消除光晕效应和边缘模糊,结合雾天图像复原模型恢复清晰图像. 实验表明,该算法在多种航拍图像中均能够有效地抑制噪声、增强细节,提升图像对比度和清晰度. 与现有的方法相比,所提算法在信息熵(IE)、结构相似度(SSIM)和峰值信噪比(PSNR)等指标上均取得显著的提升,验证了该方法在不同雾天环境下的鲁棒性和泛化能力.

关键词: 图像去雾暗通道先验像素标签大气光值透射率    
Abstract:

A pixel-labeling-based parameter-adaptive dehazing algorithm was proposed to address color distortion, detail blurring and low contrast commonly observed in aerial images captured under foggy conditions. The causes of image degradation were analyzed, and the dehazing task was transformed into pixel-label estimation of atmospheric light and transmission. A pixel-level label assignment model was constructed. A weighted graph optimization method was employed to adaptively adjust the labels and improve the estimation accuracy of atmospheric light value based on image brightness distribution and pixel similarity. A multi-label classification approach was applied to optimize the transmission, eliminating halo effect and edge blurring. The recovered clear images were obtained by using a foggy image restoration model. The experimental results showed that the proposed algorithm effectively suppressed noise, enhanced fine details, and improved image contrast and clarity in various aerial scenes. Significant improvements in information entropy (IE), structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR) were observed compared with existing methods, which validated its robustness and generalization capability across diverse foggy environment.

Key words: image dehazing    dark channel prior    pixel labeling    atmospheric light value    transmission
收稿日期: 2025-02-28 出版日期: 2026-02-04
:  TP 391  
基金资助: 重庆市自然科学基金创新发展联合基金资助项目(CSTB2023NSCQ-LZX0127);重庆交通大学研究生科研创新项目(2025S0057).
通讯作者: 曾力     E-mail: 622230040036@mails.cqjtu.edu.cn;zengli_sichuan@163.com
作者简介: 黄银清(2000—),男,硕士生,从事图像处理的研究. orcid.org/0009-0007-1871-115X. E-mail:622230040036@mails.cqjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
黄银清
曾力

引用本文:

黄银清,曾力. 像素标签化参数自适应航拍去雾算法[J]. 浙江大学学报(工学版), 2026, 60(3): 556-564.

Yinqing HUANG,Li ZENG. Pixel-labeling-based parameter-adaptive dehazing algorithm for aerial image. Journal of ZheJiang University (Engineering Science), 2026, 60(3): 556-564.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.03.011        https://www.zjujournals.com/eng/CN/Y2026/V60/I3/556

图 1  所提算法的流程图
图 2  大气光值估计的流程图
图 3  传统DCP与自适应大气光值估计方法的去雾效果对比
图 4  DCP方法和本文方法的透射率图效果对比
图 5  山区浓雾和街区浓雾环境下采用不同方法去雾前、后效果的对比
图 6  He方法[14]、Meng方法[15]和本文方法对夜间含雾图像 1~3(从上到下)去雾结果的对比
图 7  He方法[14]、Meng方法[15]和本文方法对白天含雾图像 4~6(从上到下)去雾结果的对比
含雾图像方法IEAG/dBSSIMPSNR/dB
a1He方法6.30343.90880.751718.1136
a1Meng方法7.03785.03960.816715.3683
a1本文方法6.80925.87890.891621.4371
a2He方法6.35445.38070.538910.3895
a2Meng方法7.36727.68950.839414.7969
a2本文方法7.512511.90710.885417.1597
a3He方法6.10034.66100.832920.6895
a3Meng方法6.51094.74840.739715.5612
a3本文方法6.96967.51380.822515.2859
a4He方法6.491110.76620.555512.4351
a4Meng方法7.177911.91600.816319.9611
a4本文方法7.596314.43990.937021.5008
a5He方法6.699119.15950.670915.3741
a5Meng方法7.320617.80340.816121.5933
a5本文方法7.361921.08420.923121.5186
a6He方法6.61489.23120.742416.1704
a6Meng方法7.310810.43750.781718.6810
a6本文方法6.82079.65910.860418.9387
表 1  图6和图7中去雾性能的客观评价结果
1 王丹. 基于暗通道先验的图像和视频去雾模型及算法研究[D]. 长沙: 国防科学技术大学, 2016.
WANG Dan. Mathematical modeling and algorithm on single image and video dehazing [D]. Changsha: National University of Defense Technology, 2016.
2 PANDEY P, GUPTA R, GOEL N Comprehensive review of single image defogging techniques: enhancement, prior, and learning based approaches[J]. Artificial Intelligence Review, 2025, 58 (4): 116
doi: 10.1007/s10462-024-11034-4
3 LIU R, HE G. A novel dehazing algorithm based on Retinex principle [C]//Proceedings of the International Conference on Machine Learning and Intelligent Systems Engineering. Chongqing: IEEE, 2021: 349–356.
4 ACHARYA U K, KUMAR S Image sub-division and quadruple clipped adaptive histogram equalization (ISQCAHE) for low exposure image enhancement[J]. Multidimensional Systems and Signal Processing, 2023, 34 (1): 25- 45
doi: 10.1007/s11045-022-00853-9
5 SURYA KAVITA T, VAMSIDHAR A, SUNIL KUMAR G, et al Cascaded combination of total variation regularization and contrast limited adaptive histogram equalization based image dehazing[J]. The Imaging Science Journal, 2025, 73 (2): 213- 226
doi: 10.1080/13682199.2024.2345030
6 崔莹. 基于直方图的图像去雾方法[D]. 长春: 吉林大学, 2018.
CUI Ying. Histogram based image dehaze algorithm [D]. Changchun: Jilin University, 2018.
7 CHEN G, JIA Y, YIN Y, et al. Remote sensing image dehazing using a wavelet-based generative adversarial networks [J]. Scientific Reports, 2025, 15(1): 1–13.
8 YANG P, WU H, WANG T, et al Multi-scale underwater image enhancement with optimized homomorphic filter and RGB color correction[J]. Optical Review, 2022, 29 (6): 457- 468
doi: 10.1007/s10043-022-00762-z
9 ZAMIR S W, ARORA A, KHAN S, et al Learning enriched features for fast image restoration and enhancement[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (2): 1934- 1948
doi: 10.1109/TPAMI.2022.3167175
10 NAYAR S K, NARASIMHAN S G. Vision in bad weather [C]//Proceedings of the 7th IEEE International Conference on Computer Vision. Kerkyra: IEEE, 2002: 820–827.
11 TAN K K, OAKLEY J P Physics-based approach to color image enhancement in poor visibility conditions[J]. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2001, 18 (10): 2460- 2467
doi: 10.1364/JOSAA.18.002460
12 TAN R T. Visibility in bad weather from a single image [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Anchorage: IEEE, 2008: 1–8.
13 FATTAL R. Single image dehazing [C]//ACM Transactions on Graphics. [S. l. ]: ACM, 2008.
14 HE K, SUN J, TANG X Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33 (12): 2341- 2353
15 MENG G, WANG Y, DUAN J, et al. Efficient image dehazing with boundary constraint and contextual regularization [C]//Proceedings of the IEEE International Conference on Computer Vision. Sydney: IEEE, 2013: 617–624.
16 ZHU Q, MAI J, SHAO L A fast single image haze removal algorithm using color attenuation prior[J]. IEEE Transactions on Image Processing, 2015, 24 (11): 3522- 3533
doi: 10.1109/TIP.2015.2446191
17 HASSAN H, BASHIR A K, AHMAD M, et al. Real-time image dehazing by superpixels segmentation and guidance filter [J]. Journal of Real-Time Image Processing, 2020, 18(5): 1–21.
18 金天虎, 陶砚蕴, 李佐勇 基于超像素图像分割的暗通道先验去雾改进算法[J]. 电子学报, 2023, 51 (1): 146- 159
JIN Tianhu, TAO Yanyun, LI Zuoyong An improved dark channel prior dehazing algorithm based on superpixel image segmentation[J]. Acta Electronica Sinica, 2023, 51 (1): 146- 159
19 KUMARI A, SAHOO S K A new fast and efficient dehazing and defogging algorithm for single remote sensing images[J]. Signal Processing, 2024, 215: 109289
doi: 10.1016/j.sigpro.2023.109289
20 邱啟蒙, 张亚加, 高智强, 等 基于四叉树分级搜索和透射率优化的水下图像复原[J]. 光学学报, 2023, 43 (12): 1201002
QIU Qimeng, ZHANG Yajia, GAO Zhiqiang, et al Underwater image restoration based on quadtree hierarchical search and transmittance optimization[J]. Acta Optica Sinica, 2023, 43 (12): 1201002
doi: 10.3788/AOS221598
21 NARASIMHAN S G, NAYAR S K Contrast restoration of weather degraded images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25 (6): 713- 724
doi: 10.1109/TPAMI.2003.1201821
22 NARASIMHAN S G, NAYAR S K Vision and the atmosphere[J]. International Journal of Computer Vision, 2002, 48 (3): 233- 254
doi: 10.1023/A:1016328200723
23 HE K, SUN J, TANG X Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35 (6): 1397- 1409
doi: 10.1109/TPAMI.2012.213
24 ZHOU J, ZHANG D, ZOU P, et al Retinex-based Laplacian pyramid method for image defogging[J]. IEEE Access, 2019, 7: 122459- 122472
doi: 10.1109/ACCESS.2019.2934981
25 王健, 秦春霞, 杨珂, 等 基于HSV透射率加权修正的机载视频去雾系统设计[J]. 西南交通大学学报, 2021, 56 (1): 160- 167
WANG Jian, QIN Chunxia, YANG Ke, et al Design of airborne video dehazing system for UCAV based on HSV transmission weighted correction[J]. Journal of Southwest Jiaotong University, 2021, 56 (1): 160- 167
26 WANG Z, BOVIK A C, SHEIKH H R, et al Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13 (4): 600- 612
doi: 10.1109/TIP.2003.819861
[1] 杨燕,晁丽鹏. 基于多维协同注意力的双支特征联合去雾网络[J]. 浙江大学学报(工学版), 2025, 59(6): 1119-1129.
[2] 杨燕,贾存鹏. 代理注意力下域特征交互的高效图像去雾算法[J]. 浙江大学学报(工学版), 2025, 59(12): 2527-2538.
[3] 孟小哲,冯钰新,苏卓,周凡. 基于不变学习的真实雾霾去除方法[J]. 浙江大学学报(工学版), 2024, 58(2): 268-278.
[4] 张剑钊,郭继昌,汪昱东. 基于融合逆透射率图的水下图像增强算法[J]. 浙江大学学报(工学版), 2023, 57(5): 921-929.
[5] 黄松, 易本顺. 基于自适应透射率比的水下图像复原算法[J]. 浙江大学学报(工学版), 2018, 52(1): 166-173.
[6] 王辉, 骆仲泱, 蔡洁聪, 王涛, 赵佳飞, 倪明江. SiO2纳米流体透射率影响因素实验研究[J]. J4, 2010, 44(6): 1143-1148.
[7] 林宇翔 章岳光 顾培夫 唐晋发. 提高诱导透射滤光片性能的改进设计[J]. J4, 2005, 39(2): 273-276.