Please wait a minute...
浙江大学学报(工学版)  2026, Vol. 60 Issue (3): 504-512    DOI: 10.3785/j.issn.1008-973X.2026.03.006
交通工程、土木工程     
落石冲击埋地油气管道足尺模型试验研究
杨锋1,2(),蒋楠1,*(),姚颖康1,周传波2,吕国鹏2,李开翔2
1. 江汉大学 精细爆破全国重点实验室,湖北 武汉 430056
2. 中国地质大学(武汉) 工程学院,湖北 武汉 430074
Full-scale experimental study on buried oil and gas pipeline under rockfall impact
Feng YANG1,2(),Nan JIANG1,*(),Yingkang YAO1,Chuanbo ZHOU2,Guopeng LV2,Kaixiang LI2
1. State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, China
2. Faculty of Engineering, China University of Geosciences, Wuhan 430074, China
 全文: PDF(1280 KB)   HTML
摘要:

为了合理评价山区受崩塌落石威胁的油气管线工程安全性,分析管道在落石冲击作用下的动力响应特性. 通过开展埋地油气管道的落石冲击足尺模型试验,结合试验全过程的动态应变测试技术,分析埋地管道在不同的管道-落石偏移距离(管-石偏距)下的动力响应特征,提出基于管-石安全临界偏距的埋地油气管道安全评价方法. 结果表明,在正上方落石冲击作用下,管道截面主要呈现顶部受拉、侧面受压的变形模式. 当管-石偏距从0 m增加至2 m时,管道顶部环向峰值应变从12.5 × 10?6迅速降低至3 × 10?6以下,整体呈现出随管-石偏距的增加而衰减且衰减速率不断减小的基本规律. 建立描述两者关系的幂律模型表达式,该幂律关系与足尺模型试验结果和其他文献中的室内试验结果吻合良好. 根据管道屈服应变,提出基于管-石安全临界偏距的埋地油气管道安全评价方法.

关键词: 油气管道落石冲击动力响应足尺试验    
Abstract:

The dynamic response characteristic of the pipeline under the impact of rockfall was analyzed in order to reasonably evaluate the safety of oil and gas pipeline project affected by rockfall in mountainous area. The dynamic response characteristic of buried pipelines under different pipeline-rock offset distances was analyzed combined with dynamic strain measurement technique throughout the testing process by conducting full-scale model tests of buried oil and gas pipelines subjected to rockfall impacts. A safety evaluation method for buried oil and gas pipelines based on the pipeline-rock critical safety offset was proposed. Results show that the pipeline cross-section primarily exhibits a deformation mode with tension on the top and compression on the sides under the impact of a rockfall from directly above. The peak circumferential strain at the top of the pipeline rapidly decreases from 12.5 × 10?6 to below 3 × 10?6 as pipeline-rock offset distance increases from 0 m to 2 m, showing a general trend of attenuation with increasing pipeline-rock offset distance, where the rate of attenuation continuously decreases. A power-law model was developed to describe their relationship, which accorded well with the results from the full-scale model tests and laboratory test results from other literature. A safety evaluation method for buried oil and gas pipelines based on the pipeline-rock critical safety offset distance was proposed based on the yield strain of the pipeline.

Key words: oil and gas pipeline    rockfall impact    dynamic response    full-scale experiment
收稿日期: 2025-01-11 出版日期: 2026-02-04
:  TE 973  
基金资助: 国家自然科学基金资助项目(52578584, 52478525); 湖北省自然科学基金杰出青年资助项目(2024AFA092).
通讯作者: 蒋楠     E-mail: yangfeng@cug.edu.cn;jiangnan@cug.edu.cn
作者简介: 杨锋(1998—),男,博士生,从事结构冲击防护的研究. orcid.org/0009-0000-1976-9459. E-mail:yangfeng@cug.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
杨锋
蒋楠
姚颖康
周传波
吕国鹏
李开翔

引用本文:

杨锋,蒋楠,姚颖康,周传波,吕国鹏,李开翔. 落石冲击埋地油气管道足尺模型试验研究[J]. 浙江大学学报(工学版), 2026, 60(3): 504-512.

Feng YANG,Nan JIANG,Yingkang YAO,Chuanbo ZHOU,Guopeng LV,Kaixiang LI. Full-scale experimental study on buried oil and gas pipeline under rockfall impact. Journal of ZheJiang University (Engineering Science), 2026, 60(3): 504-512.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.03.006        https://www.zjujournals.com/eng/CN/Y2026/V60/I3/504

图 1  现场试验的示意图
图 2  现场试验过程
图 3  动态应变时程
图 4  测点峰值应变的分布
图 5  峰值应变与管-石偏距的关系
图 6  峰值应变与管-石偏距的函数关系
图 7  实测应变与式(7)计算应变的对比
图 8  文献[27, 28]的室内试验结果与式(7)计算结果的对比
图 9  文献[19]中所得管-石临界偏距与式(10)计算结果的对比
1 吴世娟. 崩塌落石对澜沧江跨越管道的影响及其防治研究 [D]. 成都: 西南石油大学, 2016.
WU Shijuan. Study on the impact of rockfalls on Lantsang crossing pipeline and their prevention measures [D]. Chengdu: Southwest Petroleum University, 2016.
2 王磊, 邓清禄, 杨辉建, 等 危岩体坠落冲击对输气管道影响的分析评价[J]. 水文地质工程地质, 2007, 34 (5): 29- 32
WANG Lei, DENG Qinglu, YANG Huijian, et al Evaluation on the safety of natural gas pipeline impacted by dangerous rock fall[J]. Hydrogeology and Engineering Geology, 2007, 34 (5): 29- 32
3 张洪涛. 忠武输气管道地质灾害风险控制研究[D]. 青岛: 中国石油大学(华东), 2015.
ZHANG Hongtao. Risk control of the geological hazard for Zhongxian-Wuhan gas pipeline [D]. Qingdao: China University of Petroleum (East China), 2015.
4 王东源, 赵宇, 王成华 阳坝落石对输油管道的冲击分析[J]. 自然灾害学报, 2013, 22 (3): 229- 235
WANG Dongyuan, ZHAO Yu, WANG Chenghua Analysis of rockfall impact on buried oil pipeline at Yangba[J]. Journal of Natural Disasters, 2013, 22 (3): 229- 235
5 PICHLER B, HELLMICH C, MANG H A, et al Loading of a gravel-buried steel pipe subjected to rockfall[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132 (11): 1465- 1473
doi: 10.1061/(ASCE)1090-0241(2006)132:11(1465)
6 JING H, DENG Q, HAO J, et al. Analysis and numerical simulation on dynamic response of buried pipeline caused by rock fall impaction [C]//Proceedings of the Volume 2: Pipeline Integrity Management. Calgary: ASME, 2012: 303-311.
7 LIU M, YANG M Modeling the behavior of natural gas pipeline impacted by falling objects[J]. Engineering Failure Analysis, 2014, 42: 45- 59
doi: 10.1016/j.engfailanal.2014.03.008
8 DONG F, BIE X, TIAN J, et al Experimental and numerical study on the strain behavior of buried pipelines subjected to an impact load[J]. Applied Sciences, 2019, 9 (16): 3284
doi: 10.3390/app9163284
9 JIANG F, DONG S, ZHAO Y, et al Investigation on the deformation response of submarine pipelines subjected to impact loads by dropped objects[J]. Ocean Engineering, 2019, 194: 106638
doi: 10.1016/j.oceaneng.2019.106638
10 TIAN J, ZHANG J, DONG F, et al Dynamic response of buried pipeline subject to impact loads using piezoceramic transducers[J]. International Journal of Pressure Vessels and Piping, 2019, 177: 103984
doi: 10.1016/j.ijpvp.2019.103984
11 荆宏远. 落石冲击下浅埋管道动力学响应分析与模拟 [D]. 武汉: 中国地质大学, 2007.
JING Hongyuan. Analysis and numerical simulation on dynamic response of buried pipeline caused by rockfall impaction [D]. Wuhan: China University of Geosciences, 2007.
12 TAVAKOLI MEHRJARDI G, KARIMI M Numerical modeling of buried steel pipe subjected to impact load[J]. Journal of Pipeline Systems Engineering and Practice, 2021, 12 (4): 04021048
doi: 10.1061/(ASCE)PS.1949-1204.0000588
13 TAVAKOLI MEHRJARDI G, KAVANDI M, AMINI F, et al Large-scale experimental study of the response of steel buried pipe subjected to rockfall impacts[J]. Journal of Pipeline Systems Engineering and Practice, 2024, 15 (2): 04024011
doi: 10.1061/JPSEA2.PSENG-1572
14 朱治儒. 崩塌落石冲击埋地油气管道的模型试验及作用机理研究 [D]. 成都: 成都理工大学, 2021.
ZHU Zhiru. Model test and mechanism research of collapsing rocks impacting buried oil and gas pipelines [D]. Chengdu: Chengdu University of Technology, 2021.
15 王联伟. 几种在役管道典型地质灾害评价方法研究 [D]. 北京: 北京科技大学, 2015.
WANG Lianwei. Study on several typical geological disaster damage assessment method for in service pipelines [D]. Beijing: University of Science and Technology Beijing, 2015.
16 ZHANG J, LIANG Z, HAN C, et al Buckling behaviour analysis of a buried steel pipeline in rock stratum impacted by a rockfall[J]. Engineering Failure Analysis, 2015, 58: 281- 294
doi: 10.1016/j.engfailanal.2015.09.009
17 RAO P, WU Z, CUI J Analysis of deformation of adjacent buried pipeline under rockfall impact load[J]. Geotechnical and Geological Engineering, 2022, 40 (3): 1463- 1474
doi: 10.1007/s10706-021-01975-w
18 熊健, 邓清禄, 张宏亮, 等 崩塌落石冲击荷载作用下埋地管道的安全评价[J]. 安全与环境工程, 2013, 20 (1): 108- 114
XIONG Jian, DENG Qinglu, ZHANG Hongliang, et al Safety assessment on the response of buried pipeline caused by rockfall impact load[J]. Safety and Environmental Engineering, 2013, 20 (1): 108- 114
19 赵璐. 落石冲击作用下埋地输气管道的动力响应及极限分析 [D]. 成都: 西南石油大学, 2018.
ZHAO Lu. Dynamic response and limit analysis of buried gas pipeline under rockfall impact [D]. Chengdu: Southwest Petroleum University, 2018.
20 YU B, YI W, ZHAO H Experimental study on the maximum impact force by rock fall[J]. Landslides, 2018, 15 (2): 233- 242
doi: 10.1007/s10346-017-0876-x
21 朱斌, 蒋楠, 贾永胜, 等 下穿燃气管道爆破振动效应现场试验研究[J]. 岩石力学与工程学报, 2019, 38 (12): 2582- 2592
ZHU Bin, JIANG Nan, JIA Yongsheng, et al Field experiment on blasting vibration effect of underpass gas pipelines[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38 (12): 2582- 2592
22 杨成. 建(构)筑物拆除塌落冲击作用下地铁隧道动力响应测试与仿真分析 [D]. 武汉: 江汉大学, 2023.
YANG Cheng. Dynamic response test and simulation analysis of subway tunnel under the impact of building (structure) demolition collapse [D]. Wuhan: Jianghan University, 2023.
23 WANG G L, QU S Y, HOU X M, et al. Preliminary study on vertical subsoil participating mass [J]. Advanced Materials Research, 2011, 199/200: 1429–1434.
24 American Lifelines Alliance. Guidelines for the design of buried steel pipe [R]. Reston: ASCE, 2001.
25 胡宗耀. 城区爆破振动影响下埋地HDPE排水管道振速安全阈值研究 [D]. 武汉: 中国地质大学(武汉), 2022.
HU Zongyao. Study on safety threshold of vibration velocity of buried HDPE drainage pipeline under the influence of blasting vibration in urban area [D]. Wuhan: China University of Geosciences, 2022.
26 张鹏, 安兆暾, 李虎 爆破塌落触地载荷下浅埋缺陷PE HD管道力学响应分析[J]. 安全与环境学报, 2023, (6): 1844- 1851
ZHANG Peng, AN Zhaotun, LI Hu Dynamic response of shallow-buried defect PE HD gas pipeline under touchdown load of blasting collapse[J]. Journal of Safety and Environment, 2023, (6): 1844- 1851
27 董飞飞, 张东山, 田江平, 等 冲击载荷作用下埋地长输管道动力响应研究[J]. 石油机械, 2020, 48 (1): 132- 141
DONG Feifei, ZHANG Dongshan, TIAN Jiangping, et al Study on dynamic response of buried long distance pipeline under impact load[J]. China Petroleum Machinery, 2020, 48 (1): 132- 141
28 张虎, 邵磊, 余成, 等 冲击荷载对埋地管道影响的试验与数值模拟研究[J]. 地震工程与工程振动, 2022, 42 (3): 243- 252
ZHANG Hu, SHAO Lei, YU Cheng, et al Experimental and numerical simulation study of impact loading on buried pipeline[J]. Earthquake Engineering and Engineering Dynamics, 2022, 42 (3): 243- 252
[1] 张兴标,王涛,姚森,叶华文,王路,白伦华. 大跨度公铁两用斜拉-悬索协作体系桥断索动力响应[J]. 浙江大学学报(工学版), 2024, 58(9): 1874-1885.
[2] 白聪儿,孙哲杰,秦美娟,王潇,刘勇. 风电机组传动链动力响应特性与支撑系统影响[J]. 浙江大学学报(工学版), 2023, 57(6): 1165-1174.
[3] 孔令刚,余佳,陈云敏. 船舶撞击近海风机群桩基础的离心模型试验[J]. 浙江大学学报(工学版), 2023, 57(2): 330-339.
[4] 邱文亮,杨浩荣,吴广润. 悬索桥断索动力响应有限元模型参数研究[J]. 浙江大学学报(工学版), 2022, 56(9): 1685-1692.
[5] 黄一文,蒋楠,周传波,李海波,罗学东,姚颖康. 内壁腐蚀混凝土管道爆破动力失效机制[J]. 浙江大学学报(工学版), 2022, 56(7): 1342-1352.
[6] 张朝,黄正东,熊仲明,原晓露,许有俊,康佳旺. 地裂缝环境下钢筋混凝土框架结构的地震响应[J]. 浙江大学学报(工学版), 2022, 56(10): 2028-2036.
[7] 凌道盛,盛文军,黄博,赵云. 道面单向约束作用对飞机振动响应的影响[J]. 浙江大学学报(工学版), 2021, 55(9): 1684-1693.
[8] 周文杰,王立忠,汤旅军,国振,芮圣洁,黄玉佩. 导管架基础海上风机动力响应数值分析[J]. 浙江大学学报(工学版), 2019, 53(8): 1431-1437.
[9] 胡成宝, 王云岗, 凌道盛. 瑞利阻尼物理本质及参数对动力响应的影响[J]. 浙江大学学报(工学版), 2017, 51(7): 1284-1290.
[10] 曾晨,孙宏磊,蔡袁强,曹志刚. 饱和土体中衬砌隧道在移动荷载下的动力响应[J]. 浙江大学学报(工学版), 2015, 49(3): 511-521.
[11] 向天勇, 张正红, 闻敏杰, 单胜道. 饱和土中球形沼气池的动力响应[J]. J4, 2014, 48(2): 242-248.
[12] 曾晨,孙宏磊,蔡袁强,曹志刚. 饱和土体中衬砌隧道在移动荷载下的动力响应[J]. 浙江大学学报(工学版), 2014, 48(10): 1-2.
[13] 沈国辉,陈震,邢月龙,郭勇,孙炳楠. 环形加劲板方向受压钢管节点的承载力[J]. J4, 2014, 48(1): 168-173.
[14] 史吏, 蔡袁强, 潘晓东. 列车加减速引起轨道结构和饱和地基振动[J]. J4, 2013, 47(11): 1932-1938.
[15] 王奎华,吴文兵,马少俊,马伯宁. 嵌岩桩沉渣特性对桩顶动力响应的影响[J]. J4, 2012, 46(3): 402-408.